Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 56(15): 9343-9352, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28718656

RESUMEN

The title compound was synthesized by a reaction of the elemental educts in a corundum crucible at 1200 °C under an Ar atmosphere. The excess of Ga used in the initial mixture served as a flux for the subsequent crystal growth at 600 °C. The crystal structure of Yb4Ga24Pt9 was determined from single-crystal X-ray diffraction data: new prototype of crystal structure, space group C2/m, Pearson symbol mS74, a = 7.4809(1) Å, b = 12.9546(2) Å, c = 13.2479(2) Å, ß = 100.879(1)°, V = 1260.82(6) Å3, RF = 0.039 for 1781 observed reflections and 107 variable parameters. The structure is described as an ABABB stacking of two slabs with trigonal symmetry and compositions Yb4Ga6 (A) and Ga12Pt6 (B). The hard X-ray photoelectron spectrum (HAXPES) of Yb4Ga24Pt9 shows both Yb2+ and Yb3+ contributions as evidence of an intermediate valence state of ytterbium. The evaluated Yb valence of ∼2.5 is in good agreement with the results obtained from the magnetic susceptibility measurements. The compound is a bad metallic conductor.

2.
Proc Natl Acad Sci U S A ; 113(40): 11148-11151, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647884

RESUMEN

Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3 Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

3.
Biosci Biotechnol Biochem ; 80(11): 2151-2158, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27400037

RESUMEN

d-xylose and l-arabinose are the major constituents of plant lignocelluloses, and the related fungal metabolic pathways have been extensively examined. Although Pichia stipitis CBS 6054 grows using d-arabinose as the sole carbon source, the hypothetical pathway has not yet been clarified at the molecular level. We herein purified NAD(P)H-dependent d-arabinose reductase from cells grown on d-arabinose, and found that the enzyme was identical to the known d-xylose reductase (XR). The enzyme activity of XR with d-arabinose was previously reported to be only 1% that with d-xylose. The kcat/Km value with d-arabinose (1.27 min-1 mM-1), which was determined using the recombinant enzyme, was 13.6- and 10.5-fold lower than those with l-arabinose and d-xylose, respectively. Among the 34 putative sugar transporters from P. stipitis, only seven genes exhibited uptake ability not only for d-arabinose, but also for d-glucose and other pentose sugars including d-xylose and l-arabinose in Saccharomyces cerevisiae.

4.
Sci Technol Adv Mater ; 13(5): 054403, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877521

RESUMEN

We have characterized the electronic structure of FeSe1-x Te x for various x values using soft x-ray photoemission spectroscopy (SXPES), high-resolution photoemission spectroscopy (HRPES) and inverse photoemission spectroscopy (IPES). The SXPES valence band spectral shape shows that the 2 eV feature in FeSe, which was ascribed to the lower Hubbard band in previous theoretical studies, becomes less prominent with increasing x. HRPES exhibits systematic x dependence of the structure near the Fermi level (EF): its splitting near EF and filling of the pseudogap in FeSe. IPES shows two features, near EF and approximately 6 eV above EF; the former may be related to the Fe 3d states hybridized with chalcogenide p states, while the latter may consist of plane-wave-like and Se d components. In the incident electron energy dependence of IPES, the density of states near EF for FeSe and FeTe has the Fano lineshape characteristic of resonant behavior. These compounds exhibit different resonance profiles, which may reflect the differences in their electronic structures. By combining the PES and IPES data the on-site Coulomb energy was estimated at 3.5 eV for FeSe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...