Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(14): 1968-1984, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38511286

RESUMEN

Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.


Asunto(s)
Mitocondrias , Termometría , Termometría/métodos , Colorantes Fluorescentes/química , Temperatura
2.
ACS Omega ; 7(24): 21337-21345, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35755371

RESUMEN

Gadolinium chelates are employed worldwide today as clinical contrast agents for magnetic resonance imaging. Until now, the commonly used linear contrast agents based on the rare-earth element gadolinium have been considered safe and well-tolerated. Recently, concerns regarding this type of contrast agent have been reported, which is why there is an urgent need to develop the next generation of stable contrast agents with enhanced spin-lattice relaxation, as measured by improved T 1 relaxivity at lower doses. Here, we show that by the integration of gadolinium ions in cerium oxide nanoparticles, a stable crystalline 5 nm sized nanoparticulate system with a homogeneous gadolinium ion distribution is obtained. These cerium oxide nanoparticles with entrapped gadolinium deliver strong T 1 relaxivity per gadolinium ion (T 1 relaxivity, r 1 = 12.0 mM-1 s-1) with the potential to act as scavengers of reactive oxygen species (ROS). The presence of Ce3+ sites and oxygen vacancies at the surface plays a critical role in providing the antioxidant properties. The characterization of radial distribution of Ce3+ and Ce4+ oxidation states indicated a higher concentration of Ce3+ at the nanoparticle surfaces. Additionally, we investigated the ROS-scavenging capabilities of pure gadolinium-containing cerium oxide nanoparticles by bioluminescent imaging in vivo, where inhibitory effects on ROS activity are shown.

3.
Anal Bioanal Chem ; 413(30): 7353-7362, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704109

RESUMEN

Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.


Asunto(s)
Colorantes Fluorescentes/química , Imagen por Resonancia Magnética/métodos , Staphylococcus aureus/aislamiento & purificación , Staphylococcus epidermidis/aislamiento & purificación , Biomarcadores/metabolismo , Línea Celular , Humanos , Límite de Detección , Microscopía Electrónica de Transmisión , Espectrofotometría Ultravioleta
4.
Nanotoxicology ; 15(8): 1035-1058, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34468264

RESUMEN

Metal oxide nanoparticles are widely used in both consumer products and medical applications, but the knowledge regarding exposure-related health effects is limited. However, it is challenging to investigate nanoparticle interaction processes with biological systems. The overall aim of this project was to improve the possibility to predict exposure-related health effects of metal oxide nanoparticles through interdisciplinary collaboration by combining workflows from the pharmaceutical industry, nanomaterial sciences, and occupational medicine. Specific aims were to investigate nanoparticle-protein interactions and possible adverse immune reactions. Four different metal oxide nanoparticles; CeOx nanocrystals with 5% or 14% Gd, Co3O4, and Fe2O3, were characterized by dynamic light scattering and high-resolution transmission electron microscopy. Nanoparticle-binding proteins were identified and screened for HLA-binding peptides in silico. Monocyte interaction with nanoparticle-protein complexes was assessed in vitro. Herein, for the first time, immunogenic properties of nanoparticle-binding proteins have been characterized. The present study indicates that especially Co3O4-protein complexes can induce both 'danger signals', verified by the production of inflammatory cytokines and simultaneously bind autologous proteins, which can be presented as immunogenic epitopes by MHC class II. The clinical relevance of these findings should be further evaluated to investigate the role of metal oxide nanoparticles in the development of autoimmune disease. The general workflow identified experimental difficulties, such as nanoparticle aggregate formation and a lack of protein-free buffers suitable for particle characterization, protein analyses, as well as for cell studies. This confirms the importance of future interdisciplinary collaborations.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Cerio/toxicidad , Cobalto , Gadolinio , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas del Metal/toxicidad , Monocitos , Nanopartículas/toxicidad , Óxidos/toxicidad
5.
J Phys Chem Lett ; 12(25): 5836-5843, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34138577

RESUMEN

Amines are widely employed as additives for improving the performance of metal halide perovskite optoelectronic devices. However, amines are well-known for their high chemical reactivity, the impact of which has yet to receive enough attention from the perovskite light-emitting diode community. Here, by investigating an unusual positive aging effect of CH3NH3I/CsI/PbI2 precursor solutions as an example, we reveal that amines gradually undergo N-formylation in perovskite precursors over time. This reaction is initialized by hydrolysis of dimethylformamide in the acidic chemical environment. Further investigations suggest that the reaction products collectively impact perovskite crystallization and eventually lead to significantly enhanced external quantum efficiency values, increasing from ∼2% for fresh solutions to ≳12% for aged ones. While this case study provides a positive aging effect, a negative aging effect is possible in other perovksite systems. Our findings pave the way for more reliable and reproducible device fabrication and call for further attention to underlying chemical reactions within the perovskite inks once amine additives are included.

6.
Small ; 17(31): e2101440, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34173333

RESUMEN

Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.


Asunto(s)
Nanopartículas , Nanoestructuras , Lisosomas , Mitocondrias , Orgánulos/metabolismo
7.
Radiat Prot Dosimetry ; 195(3-4): 225-231, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34109383

RESUMEN

Cerium oxide nanoparticles with integrated gadolinium have been proved to be useful as contrast agents in magnetic resonance imaging. Of question is their performance in dual-energy computed tomography. The aims of this work are to determine (1) the relation between the computed tomography number and the concentration of the I, Gd or Ce contrast agent and (2) under what conditions it is possible to resolve the type of contrast agent. Hounsfield values of iodoacetic acid, gadolinium acetate and cerium acetate dissolved in water at molar concentrations of 10, 50 and 100 mM were measured in a water phantom using the Siemens SOMATOM Definition Force scanner; gadolinium- and cerium acetate were used as substitutes for the gadolinium-integrated cerium oxide nanoparticles. The relation between the molar concentration of the I, Gd or Ce contrast agent and the Hounsfield value was linear. Concentrations had to be sufficiently high to resolve the contrast agents.


Asunto(s)
Cerio , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119462, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524823

RESUMEN

In this work, we report a novel protein-based nanoprobe (PNP) that can be employed for quantitative analysis of Cu2+ in pure water medium and real samples. Structurally, the proposed nanoprobe comprises a biofriendly protein (hen egg-white lysozyme (HEWL)) and a Cu2+-specific chromogenic agent, where HEWL acts as a nanocarrier encapsulating a structurally tailored rhodamine B derivate. The resulting PNP exhibits a hydrodynamic diameter of ~ 106 nm and efficiently disperses in water, enabling the detection of Cu2+ in pure aqueous systems without the aid of any organic co-solvents. The high sensitivity and selectivity of PNP allow the colorimetric detection of Cu2+ in the presence of other metal interferents with a low detection limit of 160 nM. The satisfying recovery of trace level Cu2+ in environmental samples demonstrate the great potential of employing PNP for the determination of Cu2+ in actual applications. Most importantly, the simple co-grinding method employing proteins and chromogenic agents provides a novel strategy to generate sensing systems that are useful detection of pollutants in aqueous samples.


Asunto(s)
Colorimetría , Cobre , Nanoestructuras , Proteínas , Límite de Detección , Metales , Agua
10.
Nano Lett ; 21(1): 222-229, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33263404

RESUMEN

Photoemission electron microscopy and imaging X-ray photoelectron spectroscopy are today frequently used to obtain chemical and electronic states, chemical shifts, work function profiles within the fields of surface- and material sciences. Lately, because of recent technological advances, these tools have also been valuable within life sciences. In this study, we have investigated the power of photoemission electron microscopy and imaging X-ray photoelectron spectroscopy for visualization of human neutrophil granulocytes. These cells, commonly called neutrophils, are essential for our innate immune system. We hereby investigate the structure and morphology of neutrophils when adhered to gold and silicon surfaces. Energy-filtered imaging of single cells are acquired. The characteristic polymorphonuclear cellular nuclei divided into 2-5 lobes is visualized. Element-specific imaging is achieved based on O 1s, P 2p, C 1s, Si 2p, and N 1s core level spectra, delivering elemental distribution with submicrometer resolution, illustrating the strength of this type of cellular morphological studies.


Asunto(s)
Neutrófilos , Silicio , Núcleo Celular , Humanos , Microscopía Electrónica , Espectroscopía de Fotoelectrones
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118657, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32659703

RESUMEN

A rhodamine B-based sensor (RS) was designed and synthesized by a combination of the spirolacton rhodamine B (fluorophore) and multidentate chelates (ionophore) with high affinity towards Hg2+. In the presence of Hg2+, the resulting red-orange fluorescence (under UV light) and naked eye red color of RS are supposed to be used for quantitative and qualitative measurement of Hg2+. Further fluorescent titration and analysis demonstrate that RS can selectively detect Hg2+ within 1 s with a low limit of detection (LOD) of 16 nM in acetonitrile media, meanwhile, the association constant (Ka) was calculated to be 0.32 × 105 M-1. More importantly, the resultant complex (RSHg) of RS and Hg2+ has also been successfully applied to detect limited water content in acetonitrile solution.

12.
ACS Appl Mater Interfaces ; 12(17): 19768-19777, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32255602

RESUMEN

Transition-metal oxides (TMOs) are potential candidates for anode materials of lithium-ion batteries (LIBs) due to their high theoretical capacity (∼1000 mA h/g) and enhanced safety from suppressing the formation of lithium dendrites. However, the poor electron conductivity and the large volume expansion during lithiation/delithiation processes are still the main hurdles for the practical usage of TMOs as anode materials. In this work, the CoSnO3@NC@MnO@NC hierarchical nanobox (CNMN) is then proposed and fabricated to solve those issues. The as-prepared nanobox contains hollow cubic CoSnO3 as a core and dual N-doped carbon-"sandwiched" MnO particles as a shell. As anode materials of LIBs, the hollow and carbon interlayer structures effectively accommodate the volume expansion while dual active TMOs of CoSnO3 and MnO efficiently increase the specific capacity. Notably, the dual-layer structure of N-doped carbons plays a critical functional role in the incorporated composites, where the inner layer serves as a reaction substrate and a spatial barrier and the outer layer offers electron conductivity, enabling more effective involvement of active anode materials in lithium storage, as well as maintaining their high activity during lithium cycling. Subsequently, the as-prepared CNMN exhibits a high specific capacity of 1195 mA h/g after the 200th cycle at 0.1C and an excellent stable reversible capacity of about 876 mA h/g after the 300th cycle at 0.5C with only 0.07 mA h/g fade per cycle after 300 cycles. Even after a 250 times fast charging/discharging cycle both at 5C, it still retains a reversible capacity of 422.6 mA h/g. We ascribe the enhanced lithium storage performances to the novel hierarchical architectures achieved from the rational design.

13.
Anal Chem ; 92(5): 3613-3619, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32037803

RESUMEN

Intracellular lipid metabolism occurs in lipid droplets (LDs), which is critical to the survival of cells. Imaging LDs is an intuitive way to understand their physiology in live cells. However, this is limited by the availability of specific probes that can properly visualize LDs in vivo. Here, an LDs-specific red-emitting probe is proposed to address this need, which is not merely with an ultrahigh signal-to-noise (S/N) ratio and a large Stokes shift (up to 214 nm) but also with superior resistance to photobleaching. The probe has been successfully applied to real-time tracking of intracellular LDs behaviors, including fusion, migration, and lipophagy processes. We deem that the proposed probe here offers a new possibility for deeper understanding of LDs-associated behaviors, elucidation of their roles and mechanisms in cellular metabolism, and determination of the transition between adaptive lipid storage and lipotoxicity as well.


Asunto(s)
Colorantes Fluorescentes/química , Luz , Gotas Lipídicas/química , Animales , Transporte Biológico , Color , Transporte de Electrón , Colorantes Fluorescentes/metabolismo , Células HeLa , Células Hep G2 , Humanos , Gotas Lipídicas/metabolismo , Imagen Molecular , Pez Cebra
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 232-239, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31048252

RESUMEN

Hypochlorous acid (HClO) is one of the most important ROS (reactive oxygen species) and common pollutant in tap-water. However, the determination of HClO with fast response and high sensitivity/selectivity is still an urgent demanding. Here we fabricated a ratiometric fluorescent probe RC based on TBET (through-bond energy transfer) on the platform of coumarin and rhodamine with the thiosemicarbazide group as the linker. This probe could display the characteristic fluorescence emission of coumarin. Upon addition of HClO, the linker was reacted into an oxadiazole, resulting in the opening of spiro-ring of rhodamine. The resultant then gives ratiometric fluorogenic changes. The probe exhibits fast response and high selectivity and sensitivity towards HClO with a low limit of detection (~140 nM). Eventually, RC is successfully applicated for determining spiked HClO in water samples and imaging endogenous HClO in living cells.


Asunto(s)
Cumarinas/química , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Rodaminas/química , Animales , Células HeLa , Humanos , Ratones , Imagen Óptica/métodos , Células RAW 264.7 , Espectrometría de Fluorescencia/métodos , Agua/análisis
15.
Angew Chem Int Ed Engl ; 58(40): 14026-14043, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30843646

RESUMEN

Fluorophores and probes are invaluable for the visualization of the location and dynamics of gene expression, protein expression, and molecular interactions in complex living systems. Rhodamine dyes are often used as scaffolds in biological labeling and turn-on fluorescence imaging. To date, their absorption and emission spectra have been expanded to cover the entire near-infrared region (650-950 nm), which provides a more suitable optical window for monitoring biomolecular production, trafficking, and localization in real time. This review summarizes the development of rhodamine fluorophores since their discovery and provides strategies for modulating their absorption and emission spectra to generate specific bathochromic-shifts. We also explain how larger Stokes shifts and dual-emissions can be obtained from hybrid rhodamine dyes. These hybrid fluorophores can be classified into various categories based on structural features including the alkylation of amidogens, the substitution of the O atom of xanthene, and hybridization with other fluorophores.


Asunto(s)
Colorantes Fluorescentes/química , Luz , Neocórtex/diagnóstico por imagen , Imagen Óptica , Rodaminas/química , Corteza Visual/diagnóstico por imagen , Animales , Macaca , Ratones , Estructura Molecular
16.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813225

RESUMEN

Gases, such as nitrogen dioxide, formaldehyde and benzene, are toxic even at very low concentrations. However, so far there are no low-cost sensors available with sufficiently low detection limits and desired response times, which are able to detect them in the ranges relevant for air quality control. In this work, we address both, detection of small gas amounts and fast response times, using epitaxially grown graphene decorated with iron oxide nanoparticles. This hybrid surface is used as a sensing layer to detect formaldehyde and benzene at concentrations of relevance (low parts per billion). The performance enhancement was additionally validated using density functional theory calculations to see the effect of decoration on binding energies between the gas molecules and the sensor surface. Moreover, the time constants can be drastically reduced using a derivative sensor signal readout, allowing the sensor to work at detection limits and sampling rates desired for air quality monitoring applications.

17.
Sensors (Basel) ; 18(10)2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30301258

RESUMEN

A complementary metal-oxide-semiconductor (CMOS) chip biosensor was developed for cell viability monitoring based on an array of capacitance sensors utilizing a ring oscillator. The chip was packaged in a low temperature co-fired ceramic (LTCC) module with a flip chip bonding technique. A microcontroller operates the chip, while the whole measurement system was controlled by PC. The developed biosensor was applied for measurement of the proliferation stage of adherent cells where the sensor response depends on the ratio between healthy, viable and multiplying cells, which adhere onto the chip surface, and necrotic or apoptotic cells, which detach from the chip surface. This change in cellular adhesion caused a change in the effective permittivity in the vicinity of the sensor element, which was sensed as a change in oscillation frequency of the ring oscillator. The sensor was tested with human lung epithelial cells (BEAS-2B) during cell addition, proliferation and migration, and finally detachment induced by trypsin protease treatment. The difference in sensor response with and without cells was measured as a frequency shift in the scale of 1.1 MHz from the base frequency of 57.2 MHz. Moreover, the number of cells in the sensor vicinity was directly proportional to the frequency shift.


Asunto(s)
Técnicas Biosensibles/métodos , Proliferación Celular/fisiología , Línea Celular , Supervivencia Celular/fisiología , Frío , Humanos
18.
Sci Rep ; 8(1): 6999, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725117

RESUMEN

The chelating gadolinium-complex is routinely used as magnetic resonance imaging (MRI) -contrast enhancer. However, several safety issues have recently been reported by FDA and PRAC. There is an urgent need for the next generation of safer MRI-contrast enhancers, with improved local contrast and targeting capabilities. Cerium oxide nanoparticles (CeNPs) are designed with fractions of up to 50% gadolinium to utilize the superior MRI-contrast properties of gadolinium. CeNPs are well-tolerated in vivo and have redox properties making them suitable for biomedical applications, for example scavenging purposes on the tissue- and cellular level and during tumor treatment to reduce in vivo inflammatory processes. Our near edge X-ray absorption fine structure (NEXAFS) studies show that implementation of gadolinium changes the initial co-existence of oxidation states Ce3+ and Ce4+ of cerium, thereby affecting the scavenging properties of the nanoparticles. Based on ab initio electronic structure calculations, we describe the most prominent spectral features for the respective oxidation states. The as-prepared gadolinium-implemented CeNPs are 3-5 nm in size, have r1-relaxivities between 7-13 mM-1 s-1 and show clear antioxidative properties, all of which means they are promising theranostic agents for use in future biomedical applications.

19.
Org Biomol Chem ; 16(13): 2264-2268, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29532844

RESUMEN

A two-photon active probe for physiological copper (Cu2+) detection is expected to play an important role in monitoring biological metabolism. Herein, a novel Schiff base derivative (E)-2,2'-((4-((4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)azanediyl)bis(ethan-1-ol) (L) with remarkable two-photon activity was developed and synthetically investigated. L presents high selectivity and sensitivity for Cu2+ sensing in ethanol/HEPES buffer (v/v, 1 : 1), which is accompanied by the fluorescence switching "off" and subsequently "on" with the addition of EDTA. The mechanism for the detection of Cu2+ is further analyzed using 1H NMR titration, mass spectra and theoretical calculations. Furthermore, since the probe L possesses good photophysical properties, excellent biocompatibility and low cytotoxicity, it is successfully applied to track Cu2+ in the cellular endoplasmic reticulum by two-photon fluorescence imaging, showing its potential value for practical applications in biological systems.


Asunto(s)
Cobre/análisis , Colorantes Fluorescentes/química , Bases de Schiff/química , Cobre/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Colorantes Fluorescentes/toxicidad , Células Hep G2 , Humanos , Límite de Detección , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Fotones , Bases de Schiff/síntesis química , Bases de Schiff/efectos de la radiación , Bases de Schiff/toxicidad
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 198: 304-308, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29558730

RESUMEN

A novel donor-π-acceptor-π-donor type (D-π-A-π-D') Schiff base derivative (L) has been designed and synthesized. The structure of L is confirmed by single-crystal X-ray diffraction analysis as well. The photophysical properties of compound L were comprehensively investigated by using both experimental and theoretical methods. The results indicate that L exhibits large Stokes shift and moderate two-photon action (2PA) cross-section in the near infrared (NIR) region. Furthermore, the confocal microscopy imaging study demonstrates that compound L could penetrate into cells and target the cellular mitochondria compartment. Due to its low cytotoxicity, compound L provides a promising tool for directly lighting up the mitochondria compartment in living HepG2 cells.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Molecular/métodos , Bases de Schiff/química , Cristalografía por Rayos X , Colorantes Fluorescentes/farmacocinética , Células Hep G2 , Humanos , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Fotones , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...