Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Environ Sci Pollut Res Int ; 31(39): 51126-51146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39126583

RESUMEN

Plastic products are now essential commodities, yet their widespread disposal leads to environmental and human health effects, particularly in developing nations. Therefore, developing nations require comprehensive studies to assess the current state of plastic and plastic waste production to enhance plastic waste management practices. This review analyzes the import and export of plastic and the production of plastic waste in Rwanda, aiming to improve waste management practices. This review used open-access papers, reports, and websites dealing with plastic waste management. In this review, 58 articles from the Web of Science and 86 from other search engines were consulted to write this review. The findings revealed that the daily estimated plastic waste produced per person ranges between 0.012 and 0.056 kg. The estimated amount of plastic waste generated per person per year in Rwanda could be between 4.38 and 20.44 kg. Plastic waste accounts for between 1 and 8% of the total municipal solid waste produced per person per day in the country, which ranges from 219 to 255.5 kg. The average annual amount of imported plastics could reach 568.2881 tons, whereas the average quantity of exported plastics could reach 103.7414 tons. This shows that plastic management practices have not yet adopted technically advanced or improved practices, which should concern efforts to protect our environment. This study suggests approaches that can vastly improve plastic waste management and potentially open massive opportunities for the people of Rwanda.


Asunto(s)
Plásticos , Administración de Residuos , Rwanda , Administración de Residuos/métodos , Residuos Sólidos , Eliminación de Residuos , Humanos
3.
Environ Sci Pollut Res Int ; 30(32): 77959-77980, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37291354

RESUMEN

Electric and electronic equipment (EEE) consumption has grown to worrisome proportions in developing countries (DCS), resulting in massive amounts of electrical and electronic waste (e-waste) being produced. A diagnosis of e-waste proliferation is required for its sustainable management plan in Rwanda. This review is based on open-access papers with e-waste as a keyword, the present situation of EEE, and e-waste in Rwanda. The need for various information communication and technology (ICT) tools, such as end-user devices, cooling-system devices, network equipment, and telecommunication devices, is strongly encouraged by Rwandan national plans, which deem ICT as a vital enabler of knowledge-based economy and development. In 2014, EEE was 33,449 tonnes (t), which is expected to be 267,741 t in 2050, with a yearly increase rate of 5.95%. In this regard, out-of-date EEE is being dumped as e-waste in large quantities and at an increasing rate across Rwanda. E-waste is often disposed of in uncontrolled landfills together with other types of household waste. To address this rising threat, as well as to preserve the environment and human health, proper e-waste management involving e-waste sorting/separation from other waste streams, repairs, reuse, recycling, remanufacturing, and disposal has been proposed.


Asunto(s)
Residuos Electrónicos , Administración de Residuos , Humanos , Residuos Electrónicos/análisis , Rwanda , Administración de Residuos/métodos , Electrónica , Reciclaje
4.
J Environ Manage ; 219: 103-114, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734014

RESUMEN

Factors affecting the retention and export of water, sediments (TSS), nitrogen (TN) and phosphorus (TP) were examined in the Migina river catchment, southern Rwanda from May 2012 to May 2013. Landscape characteristics and seasonal changes in land use and land cover (LULC), rainfall, discharge, and area-specific net stream yields of TSS, TP and TN were measured monthly in 16 reaches of the Munyazi sub-catchment with five valley bottom LULC categories (grass/forest, ponds/reservoirs, ploughed, rice, and vegetables). Valley bottoms dominated by grass/forest and ponds/reservoir types were generally associated with positive net yields of nutrients and sediments, while those with agricultural land covers had a net negative yields, resulting in net export. Water was retained only in reaches with ponds/reservoirs. Seasonally, there was a strong relationship between net yield and discharge, with 93%, 60% and 67% of the annual TSS, TP and TN yields, respectively, transported during 115 days with rain. During low flow periods, all LULC types had positive net yields of TSS, TP and TN (suggesting retention), but during high flow periods had negative net yields (suggesting export). Significant effects of hillside land use on sediment and nutrient yields were also found. Stream and river water quality in Rwandan valley bottoms are at risk of further deterioration due to declining natural ecosystems (grassland and forest) and increasing agricultural and urban development. It is important to adopt appropriate land management practices (minimal tillage, optimization of water use, strategic implementation of retention ponds and vegetation buffer zones) to intercept TSS, TP and TN in runoff from storm water and agricultural areas. Special attention is needed for critical periods of the year when farming activities (e.g. land preparation, fertilizer application) coincide with high flow events.


Asunto(s)
Agricultura , Movimientos del Agua , Contaminantes Químicos del Agua , Humedales , Monitoreo del Ambiente , Nitrógeno , Fósforo , Ríos , Rwanda
5.
Environ Manage ; 60(3): 496-512, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28660371

RESUMEN

Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente/métodos , Hidrodinámica , Ríos/química , Calidad del Agua , Bosques , Lluvia , Rwanda , Estaciones del Año , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA