Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683000

RESUMEN

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

2.
Phys Rev Lett ; 116(10): 105003, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015487

RESUMEN

The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

3.
Artículo en Inglés | MEDLINE | ID: mdl-23410441

RESUMEN

A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas 14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k(max)L(CS)~S(3/8), where k(max) is the wave number of fastest growing mode, S=L(CS)V(A)/η is the Lundquist number, L(CS) is the length of the sheet, V(A) is the Alfvén speed, and η is the plasma resistivity), which grows super Alfvénically fast (γ(max)τ(A)~S(1/4), where γ(max) is the maximum growth rate, and τ(A)=L(CS)/V(A)). For typical background profiles, the growth rate and the wave number are found to increase in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability γ(max)τ(A)~k(max)L(CS)~S(1/2). The effect of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers Pm=ν/η, it is found that γ(max)~S(1/4)Pm(-5/8) and k(max)L(CS)~S(3/8)Pm(-3/16), leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm>>1 regime is S(crit)~10(4)Pm(1/2). These results are verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.


Asunto(s)
Algoritmos , Modelos Químicos , Gases em Plasma/química , Simulación por Computador
4.
Phys Rev Lett ; 105(23): 235002, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231473

RESUMEN

A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.

5.
Phys Rev Lett ; 103(10): 105004, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19792323

RESUMEN

A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (10(4) 10(4).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...