Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocr Relat Cancer ; 13(3): 653-66, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16954423

RESUMEN

Prostatic carcinogenesis is associated with changes in the androgen receptor (AR) axis converting it from a paracrine dependence upon stromal signaling to an autocrine-initiated signaling for proliferation and survival of prostatic cancer cells. This malignant conversion is due to gain of function changes in which the AR activates novel genomic (i.e. transcriptional) and non-genomic signaling pathways, which are not present in normal prostate epithelial cells. During further progression, additional molecular changes occur which allow these unique malignancy-dependent AR signaling pathways to be activated even in the low androgen ligand environment present following androgen ablation therapy. These signaling pathways are the result of partnering the AR with a series of other genomic (e.g. transcriptional co-activators) or non-genomic (e.g. steroid receptor co-activator (Src) kinase) signaling molecules. Thus, a combinatorial androgen receptor targeted therapy (termed CART therapy) inhibiting several points in the AR signaling cascade is needed to prevent the approximately 30,000 US males per year dying subsequent to failure of standard androgen ablation therapy. To develop such CART therapy, a series of agents targeted at specific points in the AR cascade should be used in combination with standard androgen ablative therapy to define the fewest number of agents needed to produce the maximal therapeutic anti-prostate cancer effect. As an initial approach for developing such CART therapy, a variety of new agents could be combined with luteinizing hormone-releasing hormone analogs. These include: (1) 5alpha-reductase inhibitors to inhibit the conversion of testosterone to the more potent androgen, dihydrotestosterone; (2) geldanamycin analogs to downregulate AR protein in prostate cancer cells, (3) 'bulky' steroid analogs, which can bind to AR and prevent its partnering with other co-activators/signaling molecules, and (4) small molecule kinase inhibitors to inhibit MEK, which is activated as part of the malignant AR signaling cascade.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/efectos de los fármacos , Antineoplásicos/uso terapéutico , División Celular , Inhibidores Enzimáticos/uso terapéutico , Humanos , Masculino , Orquiectomía , Neoplasias de la Próstata/cirugía , Receptores Androgénicos/fisiología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
2.
Dev Biol ; 236(2): 259-70, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11476570

RESUMEN

Bone morphogenetic protein-4 (BMP-4) induces epidermis and represses neural fate in Xenopus ectoderm. Our previous findings implicate p42 Erk MAP kinase (MAPK) in the response to neural induction. We have examined the effects of BMP-4 on MAPK activity in gastrula ectoderm. Expression of a dominant negative BMP-4 receptor resulted in a 4.5-fold elevation in MAPK activity in midgastrula ectoderm. MAPK activity was reduced in ectoderm expressing a constitutively active BMP-4 receptor, or ectoderm treated with BMP-4 protein in the presence or absence of cycloheximide. Overexpression of TAK1 led to a reduction in MAPK activity in early gastrula ectoderm. The inhibitory effects of TAK1 could be reversed by 1 microM SB 203580, a p38 inhibitor. Treatment of isolated ectoderm with SB 203580 led to expression of otx2, NCAM, and noggin. Western blot analyses indicated that the BMP-4 pathway does not activate JNKs in ectoderm. Our findings indicate that BMP-4 inhibits ectodermal MAPK activity through a TAK1/p38-type pathway. MAPK has been shown to inactivate Smad1. Thus, our results suggest that BMP-4 and MAPK pathways are mutually antagonistic in Xenopus ectoderm, and that interactions between these pathways may govern the choice between epidermal and neural fate.


Asunto(s)
Proteínas Morfogenéticas Óseas/farmacología , Ectodermo/efectos de los fármacos , Proteínas de Homeodominio , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Factores de Crecimiento , Xenopus laevis/embriología , Animales , Proteína Morfogenética Ósea 4 , Receptores de Proteínas Morfogenéticas Óseas , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Portadoras , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Ectodermo/citología , Ectodermo/enzimología , Ectodermo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Activación Enzimática/efectos de los fármacos , Gástrula/citología , Gástrula/efectos de los fármacos , Gástrula/enzimología , Gástrula/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas Quinasa Quinasa PAM/genética , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Mutación/genética , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Factores de Transcripción Otx , Fosforilación/efectos de los fármacos , Proteínas/genética , Piridinas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transactivadores/genética , Factor de Crecimiento Transformador beta/farmacología , Proteínas de Xenopus , Xenopus laevis/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Proc Natl Acad Sci U S A ; 95(25): 14833-8, 1998 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-9843975

RESUMEN

We have investigated the activity and function of mitogen-activated protein kinase (MAPK) during neural specification in Xenopus. Ectodermal MAPK activity increased between late blastula and midgastrula stages. At midgastrula, MAPK activity in both newly induced neural ectoderm and ectoderm overexpressing the anterior neural inducer noggin was 5-fold higher than in uninduced ectoderm. Overexpression of MAPK phosphatase-1 (MKP-1) in ectoderm inhibited MAPK activity and prevented neurectoderm-specific gene expression when the ectoderm was recombined with dorsal mesoderm or treated with fibroblast growth factor (FGF). Neurectoderm-specific gene expression was observed, however, in ectoderm overexpressing both noggin and MKP-1. To evaluate the role of MAPK in posterior regionalization, ectodermal isolates were treated with increasing concentrations of FGF and assayed for MAPK activity and neurectoderm-specific gene expression. Although induction of posterior neural ectoderm by FGF was accompanied by an elevation of MAPK activity, relative MAPK activity associated with posterior neural fate was no higher than that of ectoderm specified to adopt an anterior neural fate. Thus, increasingly posterior neural fates are not correlated with quantitative increases in MAPK activity. Because MAPK has been shown to down-regulate Smad1, MAPK may disrupt bone morphogenetic protein 4 (BMP-4) signaling during neural specification. Our results suggest that MAPK plays an essential role in the establishment of neural fate in vivo.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Morfogénesis , Sistema Nervioso/embriología , Xenopus/embriología , Animales , Xenopus/fisiología
4.
Dev Biol ; 193(1): 10-20, 1998 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-9466884

RESUMEN

Our previous work demonstrated that Xenopus ectoderm cells undergo an alkalinization in response to planar inductive signals during neural induction in explants. We have examined the role of intracellular alkalinization in the establishment of anterior neural fate. First, RT-PCR was used to examine neural-specific gene expression in planar explants in which the alkalinization is prevented by treatment with 4,4'-dihydrodiisothiocyanatostilbene-2,2'-disulfonate (H2DIDS). In explants cultured in the presence of H2DIDS, expression of NCAM and the anterior neural gene otx2 is greatly reduced or absent. Second, neural-specific gene expression was examined in isolates of uninduced animal cap ectoderm cultured in the presence of either methylamine or ammonium chloride. NCAM, otx2, and the anterior neural inducer noggin were expressed in alkalinized ectoderm, while the more posterior neural markers krox-20 and Hox B9 were undetectable. Expression of NCAM, otx2, and noggin was observed at stage 11 in both alkalinized ectoderm and the newly induced neural plate, suggesting that intracellular alkalinization could contribute to propagation of noggin signaling through the dorsal ectoderm. Alkalinization of uninduced ectoderm at stage 10.5 led to an upregulation of otx2 within 15 min. Activation of NCAM expression in alkalinized dissociated cells was identical to that observed in intact animal caps, indicating that alkalinization-mediated changes in gene expression do not require cell-cell contact. Finally, the effects of intracellular alkalinization on protein tyrosine phosphorylation were investigated using 2D gel electrophoresis and immunoblots probed with an antiphosphotyrosine antibody. Several phosphorylated protein detected in induced and alkalinized ectoderm were greatly reduced or absent in uninduced ectoderm, indicating that alkalinization elicits alterations in tyrosine phosphorylation similar to some of those observed during neural induction in vivo. Our results indicate that intracellular alkalinization plays a critical role in the activation of anterior neural-specific gene expression and that alkalinization may act by regulating the activity of a tyrosine kinase or phosphatase.


Asunto(s)
Inducción Embrionaria/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio , Sistema Nervioso/embriología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/análogos & derivados , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Cloruro de Amonio/farmacología , Animales , Proteínas Portadoras , Comunicación Celular , Técnicas de Cultivo , Ectodermo , Inducción Embrionaria/genética , Gástrula , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metilaminas/farmacología , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/citología , Moléculas de Adhesión de Célula Nerviosa/genética , Factores de Transcripción Otx , Fosfotirosina/análisis , Proteínas/genética , ARN Mensajero/análisis , Transactivadores/genética , Xenopus , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...