Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 223: 96-104, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29558689

RESUMEN

Phosphatidylglycerol is an essential phospholipid for photosynthesis and other cellular processes. We investigated the role of phosphatidylglycerol in cell division and metabolism in a phophatidylglycerol-auxotrophic strain of Synechococcus PCC7942. Here we show that phosphatidylglycerol is essential for the photosynthetic electron transfer and for the oligomerisation of the photosynthetic complexes, notably, we revealed that this lipid is important for non-linear electron transport. Furthermore, we demonstrate that phosphatidylglycerol starvation elevated the expressions of proteins of nitrogen and carbon metabolism. Moreover, we show that phosphatidylglycerol-deficient cells changed the morphology, became elongated, the FtsZ ring did not assemble correctly, and subsequently the division was hindered. However, supplementation with phosphatidylglycerol restored the ring-like structure at the mid-cell region and the normal cell size, demonstrating the phosphatidylglycerol is needed for normal septum formation. Taken together, central roles of phosphatidylglycerol were revealed; it is implicated in the photosynthetic activity, the metabolism and the fission of bacteria.


Asunto(s)
División Celular , Fosfatidilgliceroles/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/fisiología , Transporte de Electrón
2.
J Biol Chem ; 287(35): 29506-15, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22722936

RESUMEN

The molecular machinery of the cyanobacterial circadian clock consists of three proteins, KaiA, KaiB, and KaiC. The three Kai proteins interact with each other and generate circadian oscillations in vitro in the presence of ATP (an in vitro KaiABC clock system). KaiB consists of four subunits organized as a dimer of dimers, and its overall shape is that of an elongated hexagonal plate with a positively charged cleft flanked by two negatively charged ridges. We found that a mutant KaiB with a C-terminal deletion (KaiB(1-94)), which lacks the negatively charged ridges, was a dimer. Despite its dimeric structure, KaiB(1-94) interacted with KaiC and generated normal circadian oscillations in the in vitro KaiABC clock system. KaiB(1-94) also generated circadian oscillations in cyanobacterial cells, but they were weak, indicating that the C-terminal region and tetrameric structure of KaiB are necessary for the generation of normal gene expression rhythms in vivo. KaiB(1-94) showed the highest affinity for KaiC among the KaiC-binding proteins we examined and inhibited KaiC from forming a complex with SasA, which is involved in the main output pathway from the KaiABC clock oscillator in transcription regulation. This defect explains the mechanism underlying the lack of normal gene expression rhythms in cells expressing KaiB(1-94).


Asunto(s)
Ciclos de Actividad/fisiología , Proteínas Bacterianas/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Multimerización de Proteína , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Cianobacterias/genética , Mutación , Estructura Cuaternaria de Proteína
3.
Genes Cells ; 15(3): 269-80, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20113360

RESUMEN

In cyanobacteria, three clock proteins, KaiA, KaiB and KaiC, play essential roles in generating circadian oscillations. The interactions of these proteins change during the circadian cycle. Here, we demonstrated direct interaction between KaiA and KaiB using electron spin resonance spectroscopy. We prepared cystein (Cys)-substituted mutants of Thermosynechococcus elongatus KaiB, labeled specifically their Cys residues with spin labels and measured the ESR spectra of the labeled KaiB. We found that KaiB labeled at the 64th residue showed spectral changes in the presence of KaiA, but not in the presence of KaiC or bovine serum albumin as a negative control. KaiB labeled at the 101st residue showed no such spectral changes even in the presence of KaiA. The results suggest that KaiB interacts with KaiA in the vicinity of the 64th residue of KaiB. Further analysis demonstrated that the C-terminal clock-oscillator domain of KaiA is responsible for this interaction.


Asunto(s)
Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Mutación , Unión Proteica , Proteínas Recombinantes/química , Marcadores de Spin , Temperatura
4.
Genes Cells ; 14(1): 1-16, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19032344

RESUMEN

Pex, a clock-related protein involved in the input pathway of the cyanobacterial circadian clock system, suppresses the expression of clock gene kaiA and lengthens the circadian period. Here, we determined the crystal structure of Anabaena Pex (AnaPex; Anabaena sp. strain PCC 7120) and Synechococcus Pex (SynPex; Synechococcus sp. strain PCC 7942). Pex is a homodimer that forms a winged-helix structure. Using the DNase I protection and electrophoresis mobility shift assays on a Synechococcus kaiA upstream region, we identified a minimal 25-bp sequence that contained an imperfectly inverted repeat sequence as the Pex-binding sequence. Based on crystal structure, we predicted the amino acid residues essential for Pex's DNA-binding activity and examined the effects of various Ala-substitutions in the alpha3 helix and wing region of Pex on in vitro DNA-binding activity and in vivo rhythm functions. Mutant AnaPex proteins carrying a substitution in the wing region displayed no specific DNA-binding activity, whereas those carrying a substitution in the alpha3 helix did display specific binding activity. But the latter were less thermostable than wild-type AnaPex and their in vitro functions were defective. We concluded that Pex binds a kaiA upstream DNA sequence via its wing region and that its alpha3 helix is probably important to its stability.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/química , Synechococcus/metabolismo , Transactivadores/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Bioensayo , Proteínas CLOCK , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Dimerización , Regulación Bacteriana de la Expresión Génica , Mediciones Luminiscentes , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Desnaturalización Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Temperatura , Transactivadores/genética , Transactivadores/metabolismo
5.
Genes Cells ; 13(4): 387-95, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18363969

RESUMEN

KaiA, KaiB and KaiC constitute the circadian clock machinery in cyanobacteria. KaiC is a homohexamer; its subunit contains duplicated halves, each with a set of ATPase motifs. Here, using highly purified KaiC preparations of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 produced in Escherichia coli, we found that the N- and C-terminal domains of KaiC had extremely weak ATPase activity. ATPase activity showed temperature compensation in wild-type KaiC, but not in KaiC(S431A/T432A), a mutant that lacks two phosphorylation sites. We concluded that KaiC phosphorylation is involved in the ATPase temperature-compensation mechanism-which is probably critical to the stability of the circadian clock in cyanobacteria-and we hypothesized the following temperature-compensation mechanism: (i) The C-terminal phosphorylation sites of a KaiC hexamer subunit are phosphorylated by the C-terminal domain of an adjacent KaiC subunit; (ii) the phosphorylation suppresses the ATPase activity of the C-terminal domain; and (iii) the phosphorylated KaiC spontaneously dephosphorylates, resulting in the recover of ATPase activity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Cianobacterias/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
6.
Biochemistry ; 46(43): 12473-81, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17918957

RESUMEN

Reaction center chlorophylls (Chls) in photosystems II and I were studied in the isolated thylakoid membranes of a cyanobacterium, Acaryochloris marina, which contains Chls d and a as the major and minor pigments, respectively. The membranes contained PS I and II complexes at a 1.8:1 molar ratio on the basis of the spin densities on the tyrosine D radical and the photo-oxidized PS I primary donor (P740+). In the presence of ferricyanide, laser excitation induced bleach at 725 nm that recovered with time constants of 25 micros and 1.2 ms. The signal, designated P725, was suppressed by PS II inhibitors DCMU and hydroxylamine. The P725 spectrum was tentatively assigned to the absorption changes of the special pair Chl d, the accessory Chl d, and the acceptor pheophytin a in PS II. The addition of ascorbate induced the additional signal with a slow decay time constant of 4.5 ms. This signal showed a broad bleach at 740 nm and shift-type absorption changes at around 707 and 685 nm, which were assigned to the absorption changes of PS I special pair of Chl d (P740), the accessory Chl d, and the primary acceptor Chl a (A0), respectively. Mechanisms and the evolution of the Chl-d based reaction centers using far-red light are discussed together with the amino acid sequences of PS II D1 and D2 proteins.


Asunto(s)
Clorofila/fisiología , Cianobacterias/fisiología , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Clorofila/metabolismo , Cianobacterias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tirosina/química
7.
J Bacteriol ; 189(21): 7690-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17704219

RESUMEN

In the cyanobacterium Synechococcus sp. strain PCC 7942, a circadian clock-related gene, pex, was identified as the gene prolonging the period of the clock. A PadR domain, which is a newly classified transcription factor domain, and the X-ray crystal structure of the Pex protein suggest a role for Pex in transcriptional regulation in the circadian system. However, the regulatory target of the Pex protein is unknown. To determine the role of Pex, we monitored bioluminescence rhythms that reported the expression activity of the kaiA gene or the kaiBC operon in pex deficiency, pex constitutive expression, and the wild-type genotype. The expression of kaiA in the pex-deficient or constitutive expression genotype was 7 or 1/7 times that of the wild type, respectively, suggesting that kaiA is the target of negative regulation by Pex. In contrast, the expression of the kaiBC gene in the two pex-related genotypes was the same as that in the wild type, suggesting that Pex specifically regulates kaiA expression. We used primer extension analysis to map the transcription start site for the kaiA gene 66 bp upstream of the translation start codon. Mapping with deletion and base pair substitution of the kaiA upstream region revealed that a 5-bp sequence in this region was essential for the regulation of kaiA. The repression or constitutive expression of the kaiA transgene caused the prolongation or shortening of the circadian period, respectively, suggesting that the Pex protein changes the period via the negative regulation of kaiA.


Asunto(s)
Proteínas Bacterianas/genética , Regiones Promotoras Genéticas , Synechococcus/genética , Proteínas Bacterianas/química , Secuencia de Bases , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Genes Reporteros
8.
Biochem Biophys Res Commun ; 348(3): 864-72, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16901465

RESUMEN

Cyanobacterial clock protein KaiC has a hexagonal, pot-shaped structure composed of six identical dumbbell-shaped subunits. The opposing spherical regions of the dumbbell-shaped structures correspond to the N-terminal and C-terminal domains of KaiC. Previously, we hypothesized that the N-terminal domain of KaiC is responsible for the ATP-induced hexamerization of KaiC while the C-terminal domain is responsible for the phosphorylation of KaiC (Hayashi et al. 2004, J. Biol. Chem. 279, 52331-52337). Here, we tested that hypothesis using the purified protein of each domain. We prepared N-terminal and C-terminal domain proteins (KaiCN and KaiCC, respectively), examined their function by analyzing their ATP- or 5'-adenylylimidodiphosphate (AMPPNP; an unhydrolyzable ATP analog)-induced hexamerization, interactions with KaiA, and phosphorylation, and we demonstrated the following: (1) KaiCN had higher ATP- or AMPPNP-induced oligomerization activity than KaiCC. (2) KaiCc had phosphorylation activity as KaiCWT whereas KaiCN had no activity. (3) KaiCC interacted with KaiA whereas KaiCN did not. (4) The interactions of KaiCC with KaiA did not require that KaiC has a hexamer structure. (5) The interactions of KaiCC with KaiA enhanced the phosphorylation of KaiCC. Furthermore, we presented evidence for the intersubunit phosphorylation of KaiC. KaiCCatE2-, which lacks KaiC phosphorylation activity due to mutations of the catalytic Glu residues, was phosphorylated when it was co-incubated with KaiCC. We propose that the KaiC hexamer consists of a rigid ring structure formed by six N-terminal domains with hexamerization activity and a flexible structure formed by six C-terminal domains with intersubunit phosphorylation activity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/química , Cianobacterias/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína
9.
J Biol Chem ; 280(52): 43141-9, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16227211

RESUMEN

KaiB is a component of the circadian clock molecular machinery in cyanobacteria, which are the simplest organisms that exhibit circadian rhythms. Here we report the x-ray crystal structure of KaiB from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The KaiB crystal diffracts at a resolution of 2.6 A and includes four subunits organized as a dimer of dimers, each composed of two non-equivalent subunits. The overall shape of the tetramer is an elongated hexagonal plate, with a single positively charged cleft flanked by two negatively charged ridges whose surfaces includes several terminal chains. Site-directed mutagenesis of Synechococcus KaiB confirmed that alanine substitution of residues Lys-11 or Lys-43 in the cleft, or deletion of C-terminal residues 95-108, which forms part of the ridges, strongly weakens in vivo circadian rhythms. Characteristics of KaiB deduced from the x-ray crystal structure were also confirmed by physicochemical measurements of KaiB in solution. These data suggest that the positively charged cleft and flanking negatively charged ridges in KaiB are essential for the biological function of KaiB in the circadian molecular machinery in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Ritmo Circadiano , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cromatografía en Gel , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Dicroismo Circular , Reactivos de Enlaces Cruzados/farmacología , Cristalografía por Rayos X , Cianobacterias/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Técnicas de Transferencia de Gen , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Relación Estructura-Actividad , Ultracentrifugación
11.
J Biol Chem ; 279(50): 52331-7, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15377674

RESUMEN

Cyanobacterial clock protein KaiC has a hexagonal, pot-shaped structure composed of six identical dumbbell-shaped subunits. Each subunit has duplicated domains, and each domain has a set of ATPase motifs. The two spherical regions of the dumbbell are likely to correspond to two domains. We examined the role of the two sets of ATPase motifs by analyzing the in vitro activity of ATPgammaS binding, AMPPNP-induced hexamerization, thermostability, and phosphorylation of KaiC and by in vivo rhythm assays both in wild type KaiC (KaiCWT) and KaiCs carrying mutations in either Walker motif A or deduced catalytic Glu residues. We demonstrated that 1) the KaiC subunit had two types of ATP-binding sites, a high affinity site in N-terminal ATPase motifs and a low affinity site in C-terminal ATPase motifs, 2) the N-terminal motifs were responsible for hexamerization, and 3) the C-terminal motifs were responsible for both stabilization and phosphorylation of the KaiC hexamer. We proposed the following reaction mechanism. ATP preferentially binds to the N-terminal high affinity site, inducing the hexamerization of KaiC. Additional ATP then binds to the C-terminal low affinity site, stabilizing and phosphorylating the hexamer. We discussed the effect of these KaiC mutations on circadian bioluminescence rhythm in cells of cyanobacteria.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Cianobacterias/genética , Estabilidad de Medicamentos , Cinética , Luminiscencia , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
12.
Nat Struct Mol Biol ; 11(7): 623-31, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15170179

RESUMEN

KaiA, KaiB and KaiC constitute the circadian clock machinery in cyanobacteria, and KaiA activates kaiBC expression whereas KaiC represses it. Here we show that KaiA is composed of three functional domains, the N-terminal amplitude-amplifier domain, the central period-adjuster domain and the C-terminal clock-oscillator domain. The C-terminal domain is responsible for dimer formation, binding to KaiC, enhancing KaiC phosphorylation and generating the circadian oscillations. The X-ray crystal structure at a resolution of 1.8 A of the C-terminal clock-oscillator domain of KaiA from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 shows that residue His270, located at the center of a KaiA dimer concavity, is essential to KaiA function. KaiA binding to KaiC probably occurs via the concave surface. On the basis of the structure, we predict the structural roles of the residues that affect circadian oscillations.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Secuencia de Aminoácidos , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Dimerización , Mediciones Luminiscentes , Datos de Secuencia Molecular , Fosforilación , Conformación Proteica , Homología de Secuencia de Aminoácido
13.
Biochem Biophys Res Commun ; 316(1): 195-202, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15003530

RESUMEN

We determined the stoichiometry of KaiA-KaiC interactions. Using immunoblotting and two-dimensional Native- and SDS-PAGE (2DNS-PAGE) analysis, we demonstrated that the reaction products of KaiA-KaiC interactions in the presence of ATP consisted of only phosphorylated KaiC whereas in the presence of the unhydrolyzable analogue 5'-adenylylimidodiphosphate (AMPPNP) they consisted of KaiA and KaiC. In the presence of ATP, the KE (molar ratio of KaiA dimer to KaiC hexamer giving half saturation in the enhancement of KaiC phosphorylation) was 0.25, and IAsys affinity biosensor analysis demonstrated that 1 molecule of KaiA dimer interacted with 1 molecule of KaiC hexamer. In the presence of AMPPNP, the ratio of KaiA dimer to KaiC hexamer in KaiA-KaiC complexes was determined to be 2 by 2DNS-PAGE, Native-PAGE/Scatchard plot, and IAsys analyses. These results suggest that 2 molecules of KaiA dimer can interact with 1 molecule of KaiC hexamer, and that interactions of at least 1 molecule of KaiA dimer with 1 molecule of KaiC hexamer are enough to enhance the phosphorylation of KaiC by KaiA at an almost saturated level.


Asunto(s)
Proteínas Bacterianas/metabolismo , Adenilil Imidodifosfato/química , Técnicas Biosensibles , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Electroforesis en Gel Bidimensional , Cinética , Sustancias Macromoleculares , Fosforilación
14.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 4): 727-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15039567

RESUMEN

KaiB is a component of the circadian clock oscillator in cyanobacteria, which are the simplest organisms that exhibit circadian rhythms. KaiB consists of 108 amino-acid residues and has a molecular weight of 12 025 Da. KaiB and Cys-substituted KaiB mutants from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 were expressed as GST-fusion proteins in Escherichia coli, purified and crystallized. The crystals of wild-type KaiB belong to the monoclinic space group P2(1), with unit-cell parameters a = 89.6, b = 71.2, c = 106.8 A, beta = 100.1 degrees. While the native crystals diffract to 3.7 A, osmium derivatives, which show an approximately 4 A shrinkage in the b axis, diffract to 2.6 A. The crystals of the singly Cys-substituted mutant T64C with Hg, which show different morphology, diffract to 2.5 A and belong to the monoclinic space group P2, with unit-cell parameters a = 63.7, b = 33.4, c = 93.7 A, beta = 100.1 degrees. Anomalous difference Patterson maps of the Os- and Hg-derivative crystals had significant peaks in their Harker sections, suggesting that both derivatives are suitable for structure determination.


Asunto(s)
Proteínas Bacterianas/química , Cristalización , Cianobacterias/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Clonación Molecular , Cristalografía por Rayos X
15.
Genes Cells ; 8(3): 287-96, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12622725

RESUMEN

BACKGROUND: KaiA, KaiB and KaiC are cyanobacterial circadian clock proteins. KaiC contains two ATP/GTP-binding Walker's motif As, and mutations in these regions affect the clock oscillations. RESULTS: ATP induced the hexamerization of KaiC. The Km value for the ATP for the hexamerization was 1.9 micro m. Triphosphate nucleotides bound to the two Walker's motif As, and their binding functioned cooperatively for the hexamerization. An unhydrolysable substrate, 5'-adenylylimidodiphosphate (AMPPNP), also induced the hexamerization, indicating that nucleotide binding, but not its hydrolysis, is essential for the hexamerization. Mutations in each of the two Walker's motif As that affect the clock phenotype increased the Km value for ATP and inhibited the hexamerization. Thus, the KaiC hexamerization seems to be necessary for its clock function. The KaiC hexamer has the shape of a hexagonal pot with a diameter and height of approximately 100 A and with a relatively large cavity (73 A deep and 18-34 A wide) inside. This pot-shaped structure suggests that KaiC functions in a similar manner to F1-ATPase, helicase or ATP-dependent protease/chaperon, all of which have dynamic activities inside the central cavity of their hexameric rings. CONCLUSION: ATP-induced KaiC hexamerization is necessary for the clock function of KaiC.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Ritmo Circadiano/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Microscopía Electrónica , Datos de Secuencia Molecular , Polímeros/química , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA