Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38657567

RESUMEN

OBJECTIVES: Generative large language models (LLMs) are a subset of transformers-based neural network architecture models. LLMs have successfully leveraged a combination of an increased number of parameters, improvements in computational efficiency, and large pre-training datasets to perform a wide spectrum of natural language processing (NLP) tasks. Using a few examples (few-shot) or no examples (zero-shot) for prompt-tuning has enabled LLMs to achieve state-of-the-art performance in a broad range of NLP applications. This article by the American Medical Informatics Association (AMIA) NLP Working Group characterizes the opportunities, challenges, and best practices for our community to leverage and advance the integration of LLMs in downstream NLP applications effectively. This can be accomplished through a variety of approaches, including augmented prompting, instruction prompt tuning, and reinforcement learning from human feedback (RLHF). TARGET AUDIENCE: Our focus is on making LLMs accessible to the broader biomedical informatics community, including clinicians and researchers who may be unfamiliar with NLP. Additionally, NLP practitioners may gain insight from the described best practices. SCOPE: We focus on 3 broad categories of NLP tasks, namely natural language understanding, natural language inferencing, and natural language generation. We review the emerging trends in prompt tuning, instruction fine-tuning, and evaluation metrics used for LLMs while drawing attention to several issues that impact biomedical NLP applications, including falsehoods in generated text (confabulation/hallucinations), toxicity, and dataset contamination leading to overfitting. We also review potential approaches to address some of these current challenges in LLMs, such as chain of thought prompting, and the phenomena of emergent capabilities observed in LLMs that can be leveraged to address complex NLP challenge in biomedical applications.

3.
J Am Med Inform Assoc ; 30(12): 1954-1964, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37550244

RESUMEN

OBJECTIVE: Identifying study-eligible patients within clinical databases is a critical step in clinical research. However, accurate query design typically requires extensive technical and biomedical expertise. We sought to create a system capable of generating data model-agnostic queries while also providing novel logical reasoning capabilities for complex clinical trial eligibility criteria. MATERIALS AND METHODS: The task of query creation from eligibility criteria requires solving several text-processing problems, including named entity recognition and relation extraction, sequence-to-sequence transformation, normalization, and reasoning. We incorporated hybrid deep learning and rule-based modules for these, as well as a knowledge base of the Unified Medical Language System (UMLS) and linked ontologies. To enable data-model agnostic query creation, we introduce a novel method for tagging database schema elements using UMLS concepts. To evaluate our system, called LeafAI, we compared the capability of LeafAI to a human database programmer to identify patients who had been enrolled in 8 clinical trials conducted at our institution. We measured performance by the number of actual enrolled patients matched by generated queries. RESULTS: LeafAI matched a mean 43% of enrolled patients with 27 225 eligible across 8 clinical trials, compared to 27% matched and 14 587 eligible in queries by a human database programmer. The human programmer spent 26 total hours crafting queries compared to several minutes by LeafAI. CONCLUSIONS: Our work contributes a state-of-the-art data model-agnostic query generation system capable of conditional reasoning using a knowledge base. We demonstrate that LeafAI can rival an experienced human programmer in finding patients eligible for clinical trials.


Asunto(s)
Procesamiento de Lenguaje Natural , Unified Medical Language System , Humanos , Bases del Conocimiento , Ensayos Clínicos como Asunto
5.
J Biomed Inform ; 144: 104432, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356640

RESUMEN

BACKGROUND: An accurate medication history, foundational for providing quality medical care, requires understanding of medication change events documented in clinical notes. However, extracting medication changes without the necessary clinical context is insufficient for real-world applications. METHODS: To address this need, Track 1 of the 2022 National NLP Clinical Challenges focused on extracting the context for medication changes documented in clinical notes using the Contextualized Medication Event Dataset. Track 1 consisted of 3 subtasks: extracting medication mentions from clinical notes (NER), determining whether a medication change is being discussed (Event), and determining the action, negation, temporality, certainty, and actor for any change events (Context). Participants were allowed to participate in any one or more of the subtasks. RESULTS: A total of 32 teams with participants from 19 countries submitted a total of 211 systems across all subtasks. Most teams formulated NER as a token classification task and Event and Context as multi-class classification tasks, using transformer-based large language models. Overall, performance for NER was high across submitted systems. However, performance for Event and Context were much lower, often due to indirectly stated change events with no clear action verb, events requiring farther textual clues for understanding, and medication mentions with multiple change events. CONCLUSIONS: This shared task showed that while NLP research on medication extraction is relatively mature, understanding of contextual information surrounding medication events in clinical notes is still an open problem requiring further research to achieve the end goal of supporting real-world clinical applications.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Humanos , Lenguaje
6.
J Am Med Inform Assoc ; 30(8): 1389-1397, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37130345

RESUMEN

OBJECTIVE: Social determinants of health (SDOH) impact health outcomes and are documented in the electronic health record (EHR) through structured data and unstructured clinical notes. However, clinical notes often contain more comprehensive SDOH information, detailing aspects such as status, severity, and temporality. This work has two primary objectives: (1) develop a natural language processing information extraction model to capture detailed SDOH information and (2) evaluate the information gain achieved by applying the SDOH extractor to clinical narratives and combining the extracted representations with existing structured data. MATERIALS AND METHODS: We developed a novel SDOH extractor using a deep learning entity and relation extraction architecture to characterize SDOH across various dimensions. In an EHR case study, we applied the SDOH extractor to a large clinical data set with 225 089 patients and 430 406 notes with social history sections and compared the extracted SDOH information with existing structured data. RESULTS: The SDOH extractor achieved 0.86 F1 on a withheld test set. In the EHR case study, we found extracted SDOH information complements existing structured data with 32% of homeless patients, 19% of current tobacco users, and 10% of drug users only having these health risk factors documented in the clinical narrative. CONCLUSIONS: Utilizing EHR data to identify SDOH health risk factors and social needs may improve patient care and outcomes. Semantic representations of text-encoded SDOH information can augment existing structured data, and this more comprehensive SDOH representation can assist health systems in identifying and addressing these social needs.


Asunto(s)
Registros Electrónicos de Salud , Determinantes Sociales de la Salud , Humanos , Procesamiento de Lenguaje Natural , Factores de Riesgo , Almacenamiento y Recuperación de la Información
7.
J Biomed Inform ; 142: 104346, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061012

RESUMEN

Daily progress notes are a common note type in the electronic health record (EHR) where healthcare providers document the patient's daily progress and treatment plans. The EHR is designed to document all the care provided to patients, but it also enables note bloat with extraneous information that distracts from the diagnoses and treatment plans. Applications of natural language processing (NLP) in the EHR is a growing field with the majority of methods in information extraction. Few tasks use NLP methods for downstream diagnostic decision support. We introduced the 2022 National NLP Clinical Challenge (N2C2) Track 3: Progress Note Understanding - Assessment and Plan Reasoning as one step towards a new suite of tasks. The Assessment and Plan Reasoning task focuses on the most critical components of progress notes, Assessment and Plan subsections where health problems and diagnoses are contained. The goal of the task was to develop and evaluate NLP systems that automatically predict causal relations between the overall status of the patient contained in the Assessment section and its relation to each component of the Plan section which contains the diagnoses and treatment plans. The goal of the task was to identify and prioritize diagnoses as the first steps in diagnostic decision support to find the most relevant information in long documents like daily progress notes. We present the results of the 2022 N2C2 Track 3 and provide a description of the data, evaluation, participation and system performance.


Asunto(s)
Registros Electrónicos de Salud , Almacenamiento y Recuperación de la Información , Humanos , Procesamiento de Lenguaje Natural , Personal de Salud
8.
J Am Med Inform Assoc ; 30(8): 1367-1378, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-36795066

RESUMEN

OBJECTIVE: The n2c2/UW SDOH Challenge explores the extraction of social determinant of health (SDOH) information from clinical notes. The objectives include the advancement of natural language processing (NLP) information extraction techniques for SDOH and clinical information more broadly. This article presents the shared task, data, participating teams, performance results, and considerations for future work. MATERIALS AND METHODS: The task used the Social History Annotated Corpus (SHAC), which consists of clinical text with detailed event-based annotations for SDOH events, such as alcohol, drug, tobacco, employment, and living situation. Each SDOH event is characterized through attributes related to status, extent, and temporality. The task includes 3 subtasks related to information extraction (Subtask A), generalizability (Subtask B), and learning transfer (Subtask C). In addressing this task, participants utilized a range of techniques, including rules, knowledge bases, n-grams, word embeddings, and pretrained language models (LM). RESULTS: A total of 15 teams participated, and the top teams utilized pretrained deep learning LM. The top team across all subtasks used a sequence-to-sequence approach achieving 0.901 F1 for Subtask A, 0.774 F1 Subtask B, and 0.889 F1 for Subtask C. CONCLUSIONS: Similar to many NLP tasks and domains, pretrained LM yielded the best performance, including generalizability and learning transfer. An error analysis indicates extraction performance varies by SDOH, with lower performance achieved for conditions, like substance use and homelessness, which increase health risks (risk factors) and higher performance achieved for conditions, like substance abstinence and living with family, which reduce health risks (protective factors).


Asunto(s)
Procesamiento de Lenguaje Natural , Determinantes Sociales de la Salud , Humanos , Almacenamiento y Recuperación de la Información , Registros Electrónicos de Salud
9.
J Biomed Inform ; 139: 104302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754129

RESUMEN

An accurate and detailed account of patient medications, including medication changes within the patient timeline, is essential for healthcare providers to provide appropriate patient care. Healthcare providers or the patients themselves may initiate changes to patient medication. Medication changes take many forms, including prescribed medication and associated dosage modification. These changes provide information about the overall health of the patient and the rationale that led to the current care. Future care can then build on the resulting state of the patient. This work explores the automatic extraction of medication change information from free-text clinical notes. The Contextual Medication Event Dataset (CMED) is a corpus of clinical notes with annotations that characterize medication changes through multiple change-related attributes, including the type of change (start, stop, increase, etc.), initiator of the change, temporality, change likelihood, and negation. Using CMED, we identify medication mentions in clinical text and propose three novel high-performing BERT-based systems that resolve the annotated medication change characteristics. We demonstrate that our proposed systems improve medication change classification performance over the initial work exploring CMED.


Asunto(s)
Lenguaje , Procesamiento de Lenguaje Natural , Humanos , Narración
10.
Database (Oxford) ; 20222022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050787

RESUMEN

Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore 'Challenges in Mining Drug Adverse Reactions'. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.


Asunto(s)
Inteligencia Artificial , Biología Computacional , Biología Computacional/métodos , Minería de Datos/métodos , Personal de Salud , Humanos , Procesamiento de Lenguaje Natural
11.
Sci Data ; 9(1): 490, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953524

RESUMEN

Identifying cohorts of patients based on eligibility criteria such as medical conditions, procedures, and medication use is critical to recruitment for clinical trials. Such criteria are often most naturally described in free-text, using language familiar to clinicians and researchers. In order to identify potential participants at scale, these criteria must first be translated into queries on clinical databases, which can be labor-intensive and error-prone. Natural language processing (NLP) methods offer a potential means of such conversion into database queries automatically. However they must first be trained and evaluated using corpora which capture clinical trials criteria in sufficient detail. In this paper, we introduce the Leaf Clinical Trials (LCT) corpus, a human-annotated corpus of over 1,000 clinical trial eligibility criteria descriptions using highly granular structured labels capturing a range of biomedical phenomena. We provide details of our schema, annotation process, corpus quality, and statistics. Additionally, we present baseline information extraction results on this corpus as benchmarks for future work.


Asunto(s)
Ensayos Clínicos como Asunto , Procesamiento de Lenguaje Natural , Selección de Paciente , Ensayos Clínicos como Asunto/normas , Bases de Datos Factuales , Humanos , Almacenamiento y Recuperación de la Información
13.
J Am Med Inform Assoc ; 29(10): 1797-1806, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35923088

RESUMEN

OBJECTIVE: To provide a scoping review of papers on clinical natural language processing (NLP) shared tasks that use publicly available electronic health record data from a cohort of patients. MATERIALS AND METHODS: We searched 6 databases, including biomedical research and computer science literature databases. A round of title/abstract screening and full-text screening were conducted by 2 reviewers. Our method followed the PRISMA-ScR guidelines. RESULTS: A total of 35 papers with 48 clinical NLP tasks met inclusion criteria between 2007 and 2021. We categorized the tasks by the type of NLP problems, including named entity recognition, summarization, and other NLP tasks. Some tasks were introduced as potential clinical decision support applications, such as substance abuse detection, and phenotyping. We summarized the tasks by publication venue and dataset type. DISCUSSION: The breadth of clinical NLP tasks continues to grow as the field of NLP evolves with advancements in language systems. However, gaps exist with divergent interests between the general domain NLP community and the clinical informatics community for task motivation and design, and in generalizability of the data sources. We also identified issues in data preparation. CONCLUSION: The existing clinical NLP tasks cover a wide range of topics and the field is expected to grow and attract more attention from both general domain NLP and clinical informatics community. We encourage future work to incorporate multidisciplinary collaboration, reporting transparency, and standardization in data preparation. We provide a listing of all the shared task papers and datasets from this review in a GitLab repository.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Recolección de Datos , Manejo de Datos , Humanos , Almacenamiento y Recuperación de la Información
14.
Artículo en Inglés | MEDLINE | ID: mdl-34676376

RESUMEN

Many modern entity recognition systems, including the current state-of-the-art de-identification systems, are based on bidirectional long short-term memory (biLSTM) units augmented by a conditional random field (CRF) sequence optimizer. These systems process the input sentence by sentence. This approach prevents the systems from capturing dependencies over sentence boundaries and makes accurate sentence boundary detection a prerequisite. Since sentence boundary detection can be problematic especially in clinical reports, where dependencies and co-references across sentence boundaries are abundant, these systems have clear limitations. In this study, we built a new system on the framework of one of the current state-of-the-art de-identification systems, NeuroNER, to overcome these limitations. This new system incorporates context embeddings through forward and backward n -grams without using sentence boundaries. Our context-enhanced de-identification (CEDI) system captures dependencies over sentence boundaries and bypasses the sentence boundary detection problem altogether. We enhanced this system with deep affix features and an attention mechanism to capture the pertinent parts of the input. The CEDI system outperforms NeuroNER on the 2006 i2b2 de-identification challenge dataset, the 2014 i2b2 shared task de-identification dataset, and the 2016 CEGS N-GRID de-identification dataset (p < 0.01). All datasets comprise narrative clinical reports in English but contain different note types varying from discharge summaries to psychiatric notes. Enhancing CEDI with deep affix features and the attention mechanism further increased performance.

15.
J Am Med Inform Assoc ; 28(12): 2661-2669, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34586386

RESUMEN

OBJECTIVE: Neural network deidentification studies have focused on individual datasets. These studies assume the availability of a sufficient amount of human-annotated data to train models that can generalize to corresponding test data. In real-world situations, however, researchers often have limited or no in-house training data. Existing systems and external data can help jump-start deidentification on in-house data; however, the most efficient way of utilizing existing systems and external data is unclear. This article investigates the transferability of a state-of-the-art neural clinical deidentification system, NeuroNER, across a variety of datasets, when it is modified architecturally for domain generalization and when it is trained strategically for domain transfer. MATERIALS AND METHODS: We conducted a comparative study of the transferability of NeuroNER using 4 clinical note corpora with multiple note types from 2 institutions. We modified NeuroNER architecturally to integrate 2 types of domain generalization approaches. We evaluated each architecture using 3 training strategies. We measured transferability from external sources; transferability across note types; the contribution of external source data when in-domain training data are available; and transferability across institutions. RESULTS AND CONCLUSIONS: Transferability from a single external source gave inconsistent results. Using additional external sources consistently yielded an F1-score of approximately 80%. Fine-tuning emerged as a dominant transfer strategy, with or without domain generalization. We also found that external sources were useful even in cases where in-domain training data were available. Transferability across institutions differed by note type and annotation label but resulted in improved performance.


Asunto(s)
Anonimización de la Información , Redes Neurales de la Computación , Humanos
16.
AMIA Jt Summits Transl Sci Proc ; 2021: 575-584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34457173

RESUMEN

One of the primary challenges for clinical Named Entity Recognition (NER) is the availability of annotated training data. Technical and legal hurdles prevent the creation and release of corpora related to electronic health records (EHRs). In this work, we look at the impact of pseudo-data generation on clinical NER using gazetteering utilizing a neural network model. We report that gazetteers can result in the inclusion of proper terms with the exclusion of determiners and pronouns in preceding and middle positions. Gazetteers that had higher numbers of terms inclusive to the original dataset had a higher impact.


Asunto(s)
Registros Electrónicos de Salud , Redes Neurales de la Computación , Humanos , Lenguaje
17.
J Am Med Inform Assoc ; 28(10): 2108-2115, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34333635

RESUMEN

OBJECTIVE: Clinical notes contain an abundance of important, but not-readily accessible, information about patients. Systems that automatically extract this information rely on large amounts of training data of which there exists limited resources to create. Furthermore, they are developed disjointly, meaning that no information can be shared among task-specific systems. This bottleneck unnecessarily complicates practical application, reduces the performance capabilities of each individual solution, and associates the engineering debt of managing multiple information extraction systems. MATERIALS AND METHODS: We address these challenges by developing Multitask-Clinical BERT: a single deep learning model that simultaneously performs 8 clinical tasks spanning entity extraction, personal health information identification, language entailment, and similarity by sharing representations among tasks. RESULTS: We compare the performance of our multitasking information extraction system to state-of-the-art BERT sequential fine-tuning baselines. We observe a slight but consistent performance degradation in MT-Clinical BERT relative to sequential fine-tuning. DISCUSSION: These results intuitively suggest that learning a general clinical text representation capable of supporting multiple tasks has the downside of losing the ability to exploit dataset or clinical note-specific properties when compared to a single, task-specific model. CONCLUSIONS: We find our single system performs competitively with all state-the-art task-specific systems while also benefiting from massive computational benefits at inference.


Asunto(s)
Almacenamiento y Recuperación de la Información , Procesamiento de Lenguaje Natural , Humanos , Lenguaje
19.
JMIR Med Inform ; 9(1): e24008, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33502329

RESUMEN

BACKGROUND: As a risk factor for many diseases, family history (FH) captures both shared genetic variations and living environments among family members. Though there are several systems focusing on FH extraction using natural language processing (NLP) techniques, the evaluation protocol of such systems has not been standardized. OBJECTIVE: The n2c2/OHNLP (National NLP Clinical Challenges/Open Health Natural Language Processing) 2019 FH extraction task aims to encourage the community efforts on a standard evaluation and system development on FH extraction from synthetic clinical narratives. METHODS: We organized the first BioCreative/OHNLP FH extraction shared task in 2018. We continued the shared task in 2019 in collaboration with the n2c2 and OHNLP consortium, and organized the 2019 n2c2/OHNLP FH extraction track. The shared task comprises 2 subtasks. Subtask 1 focuses on identifying family member entities and clinical observations (diseases), and subtask 2 expects the association of the living status, side of the family, and clinical observations with family members to be extracted. Subtask 2 is an end-to-end task which is based on the result of subtask 1. We manually curated the first deidentified clinical narrative from FH sections of clinical notes at Mayo Clinic Rochester, the content of which is highly relevant to patients' FH. RESULTS: A total of 17 teams from all over the world participated in the n2c2/OHNLP FH extraction shared task, where 38 runs were submitted for subtask 1 and 21 runs were submitted for subtask 2. For subtask 1, the top 3 runs were generated by Harbin Institute of Technology, ezDI, Inc., and The Medical University of South Carolina with F1 scores of 0.8745, 0.8225, and 0.8130, respectively. For subtask 2, the top 3 runs were from Harbin Institute of Technology, ezDI, Inc., and University of Florida with F1 scores of 0.681, 0.6586, and 0.6544, respectively. The workshop was held in conjunction with the AMIA 2019 Fall Symposium. CONCLUSIONS: A wide variety of methods were used by different teams in both tasks, such as Bidirectional Encoder Representations from Transformers, convolutional neural network, bidirectional long short-term memory, conditional random field, support vector machine, and rule-based strategies. System performances show that relation extraction from FH is a more challenging task when compared to entity identification task.

20.
JMIR Med Inform ; 8(11): e23375, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245291

RESUMEN

BACKGROUND: Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. OBJECTIVE: Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. METHODS: We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. RESULTS: Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. CONCLUSIONS: The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...