Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631036

RESUMEN

The search for new drugs with the potential to ensure therapeutic success in the treatment of cardiovascular diseases has become an essential pathway to follow for health organizations and committees around the world. In June 2021, the World Health Organization listed cardiovascular diseases as one of the main causes of death worldwide, representing 32% of them. The most common is coronary artery disease, which causes the death of cardiomyocytes, the cells responsible for cardiac contractility, through ischemia and subsequent reperfusion, which leads to heart failure in the medium and short term. Metformin is one of the most-used drugs for the control of diabetes, which has shown effects beyond the control of hyperglycemia. Some of these effects are mediated by the regulation of cellular energy metabolism, inhibiting apoptosis, reduction of cell death through regulation of autophagy and reduction of mitochondrial dysfunction with further reduction of oxidative stress. This suggests that metformin may attenuate left ventricular dysfunction induced by myocardial ischemia; preclinical and clinical trials have shown promising results, particularly in the setting of acute myocardial infarction. This is a review of the molecular and pharmacological mechanisms of the cardioprotective effects of metformin during myocardial ischemia-reperfusion injury.

2.
Curr Top Med Chem ; 23(26): 2427-2435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37642000

RESUMEN

Cardiac fibrosis is known as the expansion of the cardiac interstitium through excessive deposition of extracellular matrix proteins; this process is performed by a multifunctional cell known as the cardiac fibroblast. After the myocardial injury, these cells are activated as a repair program, increase, and switch to a contractile phenotype, which is evidenced by an increase in alpha- smooth muscle actin. Likewise, there is an increase in type I and III collagen, which are considered profibrotic biomarkers. It is believed that one of the proteins involved in cardiac remodeling is METTL3, which is the enzyme responsible for N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic modification of eukaryotic mRNA. This review focuses on recent studies in which the possible role of METTL3 in the progression of fibrosis has been demonstrated, mainly in cardiac fibrogenesis.


Asunto(s)
Colágeno , Epigénesis Genética , Humanos , Metilación , Fibrosis , Colágeno/metabolismo , Fibroblastos , Metiltransferasas/metabolismo
3.
Front Cell Dev Biol ; 11: 1072315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051468

RESUMEN

Introduction: Cardiovascular diseases, especially metabolic-related disorders, are progressively growing worldwide due to high-fat-containing foods, which promote a deleterious response at the cellular level, termed lipotoxicity, or lipotoxic stress. At the cardiac level, saturated fatty acids have been directly associated with cardiomyocyte lipotoxicity through various pathological mechanisms involving mitochondrial dysfunction, oxidative stress, and ceramide production, among others. However, integrative regulators connecting saturated fatty acid-derived lipotoxic stress to mitochondrial and cardiomyocyte dysfunction remain elusive. Methods: Here, we worked with a cardiomyocyte lipotoxicity model, which uses the saturated fatty acid myristate, which promotes cardiomyocyte hypertrophy and insulin desensitization. Results: Using this model, we detected an increase in the mitochondrial E3 ubiquitin ligase, MUL1, a mitochondrial protein involved in the regulation of growth factor signaling, cell death, and, notably, mitochondrial dynamics. In this context, myristate increased MUL1 levels and induced mitochondrial fragmentation, associated with the decrease of the mitochondrial fusion protein MFN2, and with the increase of the mitochondrial fission protein DRP1, two targets of MUL1. Silencing of MUL1 prevented myristate-induced mitochondrial fragmentation and cardiomyocyte hypertrophy. Discussion: These data establish a novel connection between cardiomyocytes and lipotoxic stress, characterized by hypertrophy and fragmentation of the mitochondrial network, and an increase of the mitochondrial E3 ubiquitin ligase MUL1.

4.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35531957

RESUMEN

Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.


Asunto(s)
Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Frataxina
5.
Hum Mol Genet ; 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550363

RESUMEN

Friedreich's ataxia (FRDA) is an inherited disorder caused by depletion of frataxin (FXN), a mitochondrial protein required for iron-sulfur cluster (ISC) biogenesis. Cardiac dysfunction is the main cause of death. Yet pathogenesis, and, more generally, how the heart adapts to FXN loss, remain poorly understood, though are expected to be linked to an energy deficit. We modified a transgenic (TG) mouse model of inducible FXN depletion that permits phenotypic evaluation of the heart at different FXN levels, and focused on substrate-specific bioenergetics and stress signaling. When FXN protein in the TG heart was 17% of normal, bioenergetics and signaling were not different from control. When, 8 weeks later, FXN was ~ 97% depleted in the heart, TG heart mass and cardiomyocyte cross-sectional area were less, without evidence of fibrosis or apoptosis. mTORC1 signaling was activated, as was the integrated stress response, evidenced by greater phosphorylation of eIF2α relative to total eIF2α, and decreased protein translation. We interpret these results to suggest that, in TG hearts, an anabolic stimulus was constrained by eIF2α phosphorylation. Cardiac contractility was maintained in the 97%-FXN-depleted hearts, possibly contributed by an unexpected preservation of ß-oxidation, though pyruvate oxidation was lower. Bioenergetics alterations were matched by changes in the mitochondrial proteome, including a non-uniform decrease in abundance of ISC-containing proteins. Altogether, these findings suggest that the FXN depleted heart can suppress a major ATP demanding process such as protein translation, which, together with some preservation of ß-oxidation, could be adaptive, at least in the short term.

6.
PLoS One ; 16(8): e0255452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34407099

RESUMEN

Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Miocitos Cardíacos , Canales Catiónicos TRPP , Animales , Cardiomegalia , Fosforilación , Transducción de Señal
7.
Cell Death Differ ; 27(9): 2586-2604, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152556

RESUMEN

Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.


Asunto(s)
Angiotensina I/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fragmentos de Péptidos/farmacología , Transducción de Señal , Animales , Animales Recién Nacidos , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Dinaminas/metabolismo , Hipertrofia , MicroARNs/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Miocitos Cardíacos/ultraestructura , Factores de Transcripción NFATC/metabolismo , Norepinefrina/farmacología , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
8.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1653-1662, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29486284

RESUMEN

Skeletal muscle plays a central role in insulin-controlled glucose homeostasis. The molecular mechanisms related to insulin resistance in this tissue are incompletely understood. Herpud1 is an endoplasmic reticulum membrane protein that maintains intracellular Ca2+ homeostasis under stress conditions. It has recently been reported that Herpud1-knockout mice display intolerance to a glucose load without showing altered insulin secretion. The functions of Herpud1 in skeletal muscle also remain unknown. Based on these findings, we propose that Herpud1 is necessary for insulin-dependent glucose disposal in skeletal muscle. Here we show that Herpud1 silencing decreased insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane, and Akt Ser473 phosphorylation in cultured L6 myotubes. A decrease in insulin-induced Akt Ser473 phosphorylation was observed in soleus but not in extensor digitorum longus muscle samples from Herpud1-knockout mice. Herpud1 knockdown increased the IP3R-dependent cytosolic Ca2+ response and the activity of Ca2+-dependent serine/threonine phosphatase calcineurin in L6 cells. Calcineurin decreased insulin-dependent Akt phosphorylation and glucose uptake. Moreover, calcineurin inhibition restored the insulin response in Herpud1-depleted L6 cells. Based on these findings, we conclude that Herpud1 is necessary for adequate insulin-induced glucose uptake due to its role in Ca2+/calcineurin regulation in L6 myotubes.


Asunto(s)
Calcineurina/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Calcineurina/genética , Glucosa/genética , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética
9.
Nat Rev Cardiol ; 14(6): 342-360, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28275246

RESUMEN

Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Mitocondrias Cardíacas/fisiología , Retículo Sarcoplasmático/fisiología , Transducción de Señal/fisiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Músculo Liso Vascular/fisiología , Miocitos Cardíacos/fisiología
10.
J Physiol ; 594(3): 509-25, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26537557

RESUMEN

Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Mitocondrias/fisiología , Animales , Autofagia , Humanos , Dinámicas Mitocondriales
11.
Cell Commun Signal ; 12: 68, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25376904

RESUMEN

BACKGROUND: Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. RESULTS: In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. CONCLUSIONS: Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.


Asunto(s)
Calcio/metabolismo , Cardiomegalia/metabolismo , Insulina/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Consumo de Oxígeno , Ratas Sprague-Dawley , Transducción de Señal
12.
Cell Cycle ; 13(14): 2281-95, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24897381

RESUMEN

Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin-proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.


Asunto(s)
Autofagia/efectos de los fármacos , Dexametasona/toxicidad , Glucocorticoides/toxicidad , Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/inducido químicamente , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Línea Celular , Relación Dosis-Respuesta a Droga , Dinaminas/genética , Dinaminas/metabolismo , Proteínas de Choque Térmico/deficiencia , Proteínas de Choque Térmico/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Mitofagia/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas/genética , Proteínas/metabolismo , Quinazolinonas/farmacología , Interferencia de ARN , Ratas , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
13.
Am J Physiol Endocrinol Metab ; 306(1): E1-E13, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24085037

RESUMEN

Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.


Asunto(s)
Calcio/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/ultraestructura , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Anticuerpos/farmacología , Línea Celular , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/fisiología , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Ratas , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...