Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
Antioxid Redox Signal ; 37(1-3): 171-183, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806400

RESUMEN

Significance: Tetrahydrobiopterin (BH4) is most well known as a required cofactor for enzymes regulating cellular redox homeostasis, aromatic amino acid metabolism, and neurotransmitter synthesis. Less well known are the effects dependent on the cofactor's availability, factors governing its synthesis and recycling, redox implications of the cofactor itself, and protein-protein interactions that underlie cell death. This review provides an understanding of the recent advances implicating BH4 in the mechanisms of cell death and suggestions of possible therapeutic interventions. Recent Advances: The levels of BH4 often reflect the sum of synthetic and recycling enzyme activities. Enhanced expression of GTP cyclohydrolase, the rate-limiting enzyme in biosynthesis, increases BH4, leading to improved cell function and survival. Pharmacologically increasing BH4 levels has similar beneficial effects, leading to enhanced production of neurotransmitters and nitric oxide or reducing oxidant levels. The GTP cyclohydrolase-BH4 pairing has been implicated in a type of cell death, ferroptosis. At the cellular level, BH4 counteracts anticancer therapies directed to enhance ferroptosis via glutathione peroxidase 4 (GPX4) activity inhibition. Critical Issues: Because of the multitude of intertwined mechanisms, a clear relationship between BH4 and cell death is not well understood yet. The possibility that the cofactor directly influences cell viability has not been excluded in previous studies when modulating BH4-producing enzymes. Future Directions: The importance of cellular BH4 variations and BH4 biosynthetic enzymes to cell function and viability makes it essential to better characterize temporal changes, cofactor activity, and the influence on redox status, which in turn would help develop novel therapies. Antioxid. Redox Signal. 37, 171-183.


Asunto(s)
Biopterinas , GTP Ciclohidrolasa , Biopterinas/análogos & derivados , Biopterinas/metabolismo , GTP Ciclohidrolasa/genética , Óxido Nítrico/metabolismo , Oxidación-Reducción
3.
Front Cell Dev Biol ; 9: 687598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222255

RESUMEN

Small GTPase Rap1 plays a prominent role in endothelial cell (EC) homeostasis by promoting NO release. Endothelial deletion of the two highly homologous Rap1 isoforms, Rap1A and Rap1B, leads to endothelial dysfunction ex vivo and hypertension in vivo. Mechanistically, we showed that Rap1B promotes NO release in response to shear flow by promoting mechanosensing complex formation involving VEGFR2 and Akt activation. However, the specific contribution of the Rap1A isoform to NO release and the underlying molecular mechanisms through which the two Rap1 isoforms control endothelial function are unknown. Here, we demonstrate that endothelial dysfunction resulting from knockout of both Rap1A and Rap1B isoforms is ameliorated by exogenous L-Arg administration to rescue NO-dependent vasorelaxation and blood pressure. We confirmed that Rap1B is rapidly activated in response to agonists that trigger eNOS activation, and its deletion in ECs attenuates eNOS activation, as detected by decreased Ser1177 phosphorylation. Somewhat surprising was the finding that EC deletion of Rap1A does not lead to impaired agonist-induced vasorelaxation ex vivo. Mechanistically, the deletion of Rap1A led to elevated eNOS phosphorylation both at the inhibitory, T495, and the activating Ser1177 residues. These findings indicate that the two Rap1 isoforms act via distinct signaling pathways: while Rap1B directly positively regulates eNOS activation, Rap1A prevents negative regulation of eNOS. Notably, the combined deficiency of Rap1A and Rap1B has a severe effect on eNOS activity and NO release with an in vivo impact on endothelial function and vascular homeostasis.

4.
Arterioscler Thromb Vasc Biol ; 41(2): 638-650, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267664

RESUMEN

OBJECTIVE: Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS: Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/prevención & control , Proteínas de Unión al GTP rap/metabolismo , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Leucocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Placa Aterosclerótica , Transducción de Señal , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
5.
Free Radic Biol Med ; 152: 689-696, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31978540

RESUMEN

Glucocorticoids have important anti-inflammatory and immunomodulatory activities. Dexamethasone (Dex), a synthetic glucocorticoid, induces insulin resistance, hyperglycemia, and hypertension. The hypertensive mechanisms of Dex are not well understood. Previously, we showed that exercise training prior to Dex treatment significantly decreases blood vessel loss and hypertension in rats. In this study, we examined whether the salutary effects of exercise are associated with an enhanced metabolic profile. Analysis of the NAD and ATP content in the tibialis anterior muscle of trained and non-trained animals indicated that exercise increases both NAD and ATP; however, Dex treatment had no effect on any of the experimental groups. Likewise, Dex did not change NAD and ATP in cultured endothelial cells following 24 h and 48 h of incubation with high concentrations. Reduced VEGF-stimulated NO production, however, was verified in endothelial cultured cells. Reduced NO was not associated with changes in survival or the BH4 to BH2 ratio. Moreover, Dex had no effect on bradykinin- or shear-stress-stimulated NO production, indicating that VEGF-stimulated eNOS phosphorylation is a target of Dex's effects. The PTP1B inhibitor increased NO in Dex-treated cells in a dose-dependent fashion, an effect that was replicated by the glucocorticoid receptor inhibitor, RU486. In combination, these results indicate that Dex-induced endothelial dysfunction is mediated by glucocorticoid receptor and PTP1B activation. Moreover, since exercise reduces the expression of PTP1B and normalized insulin resistance in aging rats, our findings indicate that exercise training by reducing PTP1B activity counteracts Dex-induced hypertension in vivo.


Asunto(s)
Hipertensión , Rarefacción Microvascular , Animales , Dexametasona/toxicidad , Células Endoteliales , Monoéster Fosfórico Hidrolasas , Ratas
6.
Redox Biol ; 29: 101407, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926630

RESUMEN

Hypertonia is pathognomonic of cerebral palsy (CP), often caused by brain injury before birth. To understand the early driving events of hypertonia, we utilized magnetic resonance imaging (MRI) assessment of early critical brain injury in rabbit fetuses (79% term) that will predict hypertonia after birth following antenatal hypoxia-ischemia. We examined if individual variations in the tetrahydrobiopterin cofactor in the parts of the brain controlling motor function could indicate a role in specific damage to motor regions and disruption of circuit integration as an underlying mechanism for acquiring motor disorders, which has not been considered before. The rabbit model mimicked acute placental insufficiency and used uterine ischemia at a premature gestation. MRI during the time of hypoxia-ischemia was used to differentiate which individual fetal brains would become hypertonic. Four brain regions collected immediately after hypoxia-ischemia or 48 h later were analyzed in a blinded fashion. Age-matched sham-operated animals were used as controls. Changes in the reactive nitrogen species and gene expression of the tetrahydrobiopterin biosynthetic enzymes in brain regions were also studied. We found that a combination of low tetrahydrobiopterin content in the cortex, basal ganglia, cerebellum, and thalamus brain regions, but not a unique low threshold of tetrahydrobiopterin, contributed etiologically to hypertonia. The biggest contribution was from the thalamus. Evidence for increased reactive nitrogen species was found in the cortex. By 48 h, tetrahydrobiopterin and gene expression levels in the different parts of the brain were not different between MRI stratified hypertonia and non-hypertonia groups. Sepiapterin treatment given to pregnant dams immediately after hypoxia-ischemia ameliorated hypertonia and death. We conclude that a developmental tetrahydrobiopterin variation is necessary with fetal hypoxia-ischemia and is critical for disrupting normal motor circuits that develop into hypertonia. The possible mechanistic pathway involves reactive nitrogen species.


Asunto(s)
Hipoxia Fetal , Hipoxia-Isquemia Encefálica , Animales , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Placenta/diagnóstico por imagen , Placenta/metabolismo , Embarazo , Conejos
7.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845710

RESUMEN

In a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues. The EPR signal for the 2Fe2S clusters N1b in Complex I and/or S1 in Complex II and the 2Fe2S cluster in xanthine oxidoreductase in rat liver tissue do not change in intensity because these clusters are already reduced; however, the EPR signals for N2, the terminal cluster in Complex I, and N4, the cluster preceding the terminal cluster, decrease upon adding chromate. More surprising to us, the EPR signals for N3, the cluster preceding the 2Fe2S cluster in Complex I, also decrease upon adding chromate. Moreover, this method is used to obtain the concentration of the 2Fe2S clusters in white blood cells where the 2Fe2S signal is mostly oxidized before treatment with chromate and becomes reduced and EPR detectable after treatment with chromate. The increase of the g = 1.94 2Fe2S EPR signal upon the addition of chromate can thus be used to obtain the relative steady-state concentration of the 2Fe2S clusters and steady-state concentration of Complex I and/or Complex II in mitochondria.


Asunto(s)
Bronquios/química , Cromatos/efectos adversos , Hígado/química , Mitocondrias/química , Animales , Bronquios/citología , Bronquios/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Hígado/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Ratas , Xantina Deshidrogenasa/metabolismo
8.
Front Physiol ; 9: 83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29563877

RESUMEN

Preeclampsia is a maternal hypertensive disorder that affects up to 1 out of 12 pregnancies worldwide. It is characterized by proteinuria, endothelial dysfunction, and elevated levels of the soluble form of the vascular endothelial growth factor receptor-1 (VEGFR-1, known as sFlt-1). sFlt-1 effects are mediated in part by decreasing VEGF signaling. The direct effects of sFlt-1 on cellular metabolism and bioenergetics in preeclampsia, have not been established. The goal of this study was to evaluate whether sFlt-1 causes mitochondrial dysfunction leading to disruption of normal functioning in endothelial and placental cells in preeclampsia. Endothelial cells (ECs) and first-trimester trophoblast (HTR-8/SVneo) were treated with serum from preeclamptic women rich in sFlt-1 or with the recombinant protein. sFlt-1, dose-dependently inhibited ECs respiration and acidification rates indicating a metabolic phenotype switch enhancing glycolytic flux. HTR-8/SVneo displayed a strong basal glycolytic metabolism, remaining less sensitive to sFlt-1-induced mitochondrial impairment. Moreover, results obtained in ECs exposed to serum from preeclamptic subjects demonstrated that increased sFlt-1 leads to metabolic perturbations accountable for mitochondrial dysfunction observed in preeclampsia. sFlt-1 exacerbated mitochondrial reactive oxygen species (ROS) formation and mitochondrial membrane potential dissipation in ECs and trophoblasts exposed to serum from preeclamptic women. Forcing oxidative metabolism by culturing cells in galactose media, further sensitized cells to sFlt-1. This approach let us establish that sFlt-1 targets mitochondrial function in ECs. Effects of sFlt-1 on HTR-8/SVneo cells metabolism were amplified in galactose, demonstrating that sFlt-1 only target cells that rely mainly on oxidative metabolism. Together, our results establish the early metabolic perturbations induced by sFlt-1 and the resulting endothelial and mitochondrial dysfunction in preeclampsia.

9.
Antioxid Redox Signal ; 28(15): 1416-1432, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29037049

RESUMEN

SIGNIFICANCE: Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. CRITICAL ISSUES: Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. FUTURE DIRECTIONS: More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.


Asunto(s)
Nitrógeno/química , Oxígeno/química , Especies de Nitrógeno Reactivo/química , Especies Reactivas de Oxígeno/química , Animales , Colorantes Fluorescentes/química , Humanos , Transducción de Señal/fisiología
10.
Dev Neurosci ; 40(5-6): 534-546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31163416

RESUMEN

BACKGROUND: Chorioamnionitis from ascending bacterial infection through the endocervix is a potential risk factor for cerebral palsy. Tetrahydrobiopterin, an essential cofactor for nitric oxide synthase (NOS) and amino acid hydroxylases, when augmented in the fetal brain, prevents some of the cerebral palsy-like deficits in a rabbit hypoxia-ischemia model. OBJECTIVES: To study the effect of lipopolysaccharide (LPS)-induced intrauterine inflammation in preterm gestation on motor deficits in the newborn, and whether biosynthesis of tetrahydrobiopterin or inflammatory mediators is affected in the fetal brain. METHODS: Pregnant rabbits at 28 days gestation (89% term) were administered either saline or LPS into both endocervical openings. One group underwent spontaneous delivery, and neurobehavioral tests were performed at postnatal day (P) 1 and P11, with some kits being sacrificed at P1 for histological analysis. Another group underwent Cesarean section 24 h after LPS administration. Gene sequences for rabbit biosynthetic enzymes of tetra-hydrobiopterin pathways were determined and analyzed in addition to cytokines, using quantitative real-time polymerase chain reaction. RESULTS: Exposure to 200 µg/kg/mL LPS caused a locomotion deficit and mild hypertonia at P1. By P11, most animals turned into normal-appearing kits. There was no difference in neuronal cell death in the caudate between hypertonic and nonhypertonic kits at P1 (n = 3-5 in each group). Fetal brain GTP cyclohydrolase I was increased, whereas sepiapterin reductase and 6-pyruvoyltetrahydropterin synthase were decreased, 24 h after LPS administration. Neuronal NOS was also increased. Regardless of the position in the uterus or the brain region, expression of TNF-α and TGF-ß was decreased, whereas that of IL-1ß, IL-6, and IL-8 was increased (n = 3-4 in each group). CONCLUSIONS: This is the first study using an ascending LPS-induced intrauterine inflammation model in rabbits, showing mostly transient hypertonia and mainly locomotor deficits in the kits. Not all proinflammatory cytokines are increased in the fetal brain following LPS administration. Changes in key tetrahydro-biopterin biosynthetic enzymes possibly indicate different effects of the inflammatory insult.

11.
Redox Biol ; 13: 594-599, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28803128

RESUMEN

Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed.


Asunto(s)
Biopterinas/análogos & derivados , Parálisis Cerebral/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Oxidorreductasas de Alcohol/deficiencia , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Biopterinas/genética , Biopterinas/metabolismo , Parálisis Cerebral/etiología , Parálisis Cerebral/genética , GTP Ciclohidrolasa/deficiencia , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/genética , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Liasas de Fósforo-Oxígeno/deficiencia , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo
12.
Sci Rep ; 7(1): 3093, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596578

RESUMEN

GTP cyclohydrolase 1 (GCH1) and its product tetrahydrobiopterin play crucial roles in cardiovascular health and disease, yet the exact regulation and role of GCH1 in adverse cardiac remodeling after myocardial infarction are still enigmatic. Here we report that cardiac GCH1 is degraded in remodeled hearts after myocardial infarction, concomitant with increases in the thickness of interventricular septum, interstitial fibrosis, and phosphorylated p38 mitogen-activated protein kinase and decreases in left ventricular anterior wall thickness, cardiac contractility, tetrahydrobiopterin, the dimers of nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and the expression of sarcoplasmic reticulum Ca2+ handling proteins. Intriguingly, transgenic overexpression of GCH1 in cardiomyocytes reduces the thickness of interventricular septum and interstitial fibrosis and increases anterior wall thickness and cardiac contractility after infarction. Moreover, we show that GCH1 overexpression decreases phosphorylated p38 mitogen-activated protein kinase and elevates tetrahydrobiopterin levels, the dimerization and phosphorylation of neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ release, and sarcoplasmic reticulum Ca2+ handling proteins in post-infarction remodeled hearts. Our results indicate that the pivotal role of GCH1 overexpression in post-infarction cardiac remodeling is attributable to preservation of neuronal nitric oxide synthase and sarcoplasmic reticulum Ca2+ handling proteins, and identify a new therapeutic target for cardiac remodeling after infarction.


Asunto(s)
GTP Ciclohidrolasa/genética , Expresión Génica , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Transgenes , Remodelación Ventricular/genética , Animales , Calcio/metabolismo , Fibrosis , GTP Ciclohidrolasa/metabolismo , Pruebas de Función Cardíaca , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Especificidad de Órganos , Fosforilación , Retículo Sarcoplasmático/metabolismo
13.
Chem Rev ; 117(15): 10043-10120, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28654243

RESUMEN

Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/química
14.
Blood ; 129(21): 2917-2927, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28336528

RESUMEN

Atherothrombosis is a process mediated by dysregulated platelet activation that can cause life-threatening complications and is the leading cause of death by cardiovascular disease. Platelet reactivity in hyperlipidemic conditions is enhanced when platelet scavenger receptor CD36 recognizes oxidized lipids in oxidized low-density lipoprotein (oxLDL) particles, a process that induces an overt prothrombotic phenotype. The mechanisms by which CD36 promotes platelet activation and thrombosis remain incompletely defined. In this study, we identify a mechanism for CD36 to promote thrombosis by increasing activation of MAPK extracellular signal-regulated kinase 5 (ERK5), a protein kinase known to be exquisitely sensitive to redox stress, through a signaling pathway requiring Src kinases, NADPH oxidase, superoxide radical anion, and hydrogen peroxide. Pharmacologic inhibitors of ERK5 blunted platelet activation and aggregation in response to oxLDL and targeted genetic deletion of ERK5 in murine platelets prevented oxLDL-induced platelet deposition on immobilized collagen in response to arterial shear. Importantly, in vivo thrombosis experiments after bone marrow transplantation from platelet-specific ERK5 null mice into hyperlipidemic apolipoprotein E null mice showed decreased platelet accumulation and increased thrombosis times compared with mice transplanted with ERK5 expressing control bone marrows. These findings suggest that atherogenic conditions critically regulate platelet CD36 signaling by increasing superoxide radical anion and hydrogen peroxide through a mechanism that promotes activation of MAPK ERK5.


Asunto(s)
Plaquetas/inmunología , Antígenos CD36/inmunología , Hiperlipidemias/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Proteína Quinasa 7 Activada por Mitógenos/inmunología , Activación Plaquetaria/inmunología , Trombosis/inmunología , Aloinjertos , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/inmunología , Plaquetas/patología , Trasplante de Médula Ósea , Antígenos CD36/genética , Humanos , Hiperlipidemias/genética , Hiperlipidemias/patología , Lipoproteínas LDL/genética , Lipoproteínas LDL/inmunología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Mutantes , Proteína Quinasa 7 Activada por Mitógenos/genética , NADPH Oxidasas/genética , NADPH Oxidasas/inmunología , Activación Plaquetaria/genética , Trombosis/genética , Trombosis/patología
16.
Free Radic Biol Med ; 93: 1-11, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826575

RESUMEN

Tetrahydrobiopterin (BH4) represents a potential strategy for the treatment of cardiac remodeling, fibrosis and/or diastolic dysfunction. The effects of oral treatment with BH4 (Sapropterin™ or Kuvan™) are however dose-limiting with high dose negating functional improvements. Cardiomyocyte-specific overexpression of GTP cyclohydrolase I (mGCH) increases BH4 several-fold in the heart. Using this model, we aimed to establish the cardiomyocyte-specific responses to high levels of BH4. Quantification of BH4 and BH2 in mGCH transgenic hearts showed age-based variations in BH4:BH2 ratios. Hearts of mice (<6 months) have lower BH4:BH2 ratios than hearts of older mice while both GTPCH activity and tissue ascorbate levels were higher in hearts of young than older mice. No evident changes in nitric oxide (NO) production assessed by nitrite and endogenous iron-nitrosyl complexes were detected in any of the age groups. Increased BH4 production in cardiomyocytes resulted in a significant loss of mitochondrial function. Diminished oxygen consumption and reserve capacity was verified in mitochondria isolated from hearts of 12-month old compared to 3-month old mice, even though at 12 months an improved BH4:BH2 ratio is established. Accumulation of 4-hydroxynonenal (4-HNE) and decreased glutathione levels were found in the mGCH hearts and isolated mitochondria. Taken together, our results indicate that the ratio of BH4:BH2 does not predict changes in neither NO levels nor cellular redox state in the heart. The BH4 oxidation essentially limits the capacity of cardiomyocytes to reduce oxidant stress. Cardiomyocyte with chronically high levels of BH4 show a significant decline in redox state and mitochondrial function.


Asunto(s)
Biopterinas/análogos & derivados , GTP Ciclohidrolasa/metabolismo , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Aldehídos/metabolismo , Animales , Biopterinas/administración & dosificación , Biopterinas/efectos adversos , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , GTP Ciclohidrolasa/biosíntesis , Glutatión/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Superóxidos/metabolismo
17.
Appl Magn Reson ; 46(8): 885-895, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26441482

RESUMEN

This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer.

18.
EMBO Rep ; 16(5): 628-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25807985

RESUMEN

Decreased nitric oxide (NO) bioavailability underlies a number of cardiovascular pathologies, including hypertension. The shear stress exerted by flowing blood is the main determinant of NO release. Rap1 promotes integrin- and cadherin-mediated signaling. Here, we show that Rap1 is a critical regulator of NO production and endothelial function. Rap1 deficiency in murine endothelium attenuates NO production and diminishes NO-dependent vasodilation, leading to endothelial dysfunction and hypertension, without deleterious effects on vessel integrity. Mechanistically, Rap1 is activated by shear stress, promotes the formation of the endothelial mechanosensing complex-comprised of PECAM-1, VE-cadherin and VEGFR2- and downstream signaling to NO production. Our study establishes a novel paradigm for Rap1 as a regulator of mechanotransduction.


Asunto(s)
Endotelio/metabolismo , Mecanotransducción Celular , Óxido Nítrico/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Presión Sanguínea , Permeabilidad Capilar/genética , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especificidad de Órganos/genética , Transducción de Señal , Vasodilatación/genética , Proteínas de Unión al GTP rap1/genética
19.
J Neurochem ; 132(4): 394-402, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25421613

RESUMEN

We hypothesized that a deficiency in the descending serotonergic input to spinal cord may underlie postnatal muscle hypertonia after global antenatal hypoxic-ischemic injury in a rabbit model of cerebral palsy. Neurotransmitter content was determined by HPLC in the spinal cord of newborns with and without muscle hypertonia after fetal global hypoxic-ischemic brain injury and naïve controls. Contrary to our hypothesis, serotonin levels in both cervical and lumbar expansions and norepinephrine in cervical expansion were increased in hypertonic kits relative to non-hypertonic kits and controls, with unchanged number of serotonergic cells in caudal raphe by stereological count. Serotonergic fiber length per unit of volume was also increased in hypertonic kits' cervical and lumbar spinal cord, both in dorsal and ventral horns. Gene expression of serotonin transporter was increased and 5-HTR2 receptors were decreased in hypertonic kits relative to controls in cervical and lumbar cord. Intrathecal administration of non-selective serotonin receptor inhibitor methysergide decreased muscle tone in hypertonic kits only. Conversely, intrathecal administration of serotonin solution increased muscle tone only in non-hypertonic kits. We speculate that maturation of serotonergic system in spinal cord may be directly affected by decreased corticospinal connectivity after antenatal hypoxic-ischemic brain injury. Following prenatal hypoxia-ischemia, newborn rabbits exhibit elevated levels of serotonin in the spinal cord that were linked to muscle hypertonia. Serotonergic terminal density was also increased in hypertonic newborns' spinal cord. Intrathecal administration of the non-selective serotonin receptor inhibitor methysergide decreased muscle tone in hypertonic newborns only. Elevated spinal serotonin thus suggests a novel pathophysiological mechanism of hypertonia in cerebral palsy.


Asunto(s)
Parálisis Cerebral/metabolismo , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Serotonina/metabolismo , Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Parálisis Cerebral/etiología , Femenino , Hipoxia-Isquemia Encefálica/complicaciones , Datos de Secuencia Molecular , Embarazo , Conejos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
20.
Chem Res Toxicol ; 27(7): 1155-65, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24890552

RESUMEN

Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems.


Asunto(s)
Óxidos N-Cíclicos/metabolismo , Mitocondrias Cardíacas/metabolismo , Organofosfonatos/metabolismo , Pirroles/metabolismo , Superóxidos/metabolismo , Animales , Óxidos N-Cíclicos/química , Organofosfonatos/química , Pirroles/química , Ratas , Detección de Spin , Superóxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...