Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(7): 3749-3754, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38298095

RESUMEN

Molecular functionalization of MoS2 has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS2, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.

2.
Small ; 20(8): e2303275, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37875781

RESUMEN

Kondo lattices are systems with unusual electronic properties that stem from strong electron correlation, typically studied in intermetallic 3D compounds containing lanthanides or actinides. Lowering the dimensionality of the system enhances the role of electron correlations providing a new tuning knob for the search of novel properties in strongly correlated quantum matter. The realization of a 2D Kondo lattice by stacking a single-layer Mott insulator on a metallic surface is reported. The temperature of the system is steadily lowered and by using high-resolution scanning tunneling spectroscopy, the phase transition leading to the Kondo lattice is followed. Above 27 K the interaction between the Mott insulator and the metal is negligible and both keep their original electronic properties intact. Below 27 K the Kondo screening of the localized electrons in the Mott insulator begins and below 11 K the formation of a coherent quantum electronic state extended to the entire sample, i.e., the Kondo lattice, takes place. By means of density functional theory, the electronic properties of the system and its evolution with temperature are explained. The findings contribute to the exploration of unconventional states in 2D correlated materials.

3.
Small ; 19(29): e2300262, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029707

RESUMEN

Polymorphic phases and collective phenomena-such as charge density waves (CDWs)-in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine-tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE-grown monolayer (ML) TaTe2 . This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te…Te and Ta-Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMDs.

4.
Nanoscale ; 14(40): 15111-15118, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36205255

RESUMEN

In this work we fabricate and characterize a functionalized superconducting (SC) Nb tip of a scanning tunnelling microscope (STM). The tip is functionalized with a Tetracyanoquinodimethane molecule (TCNQ) that accepts charge from the tip and develops a magnetic moment. As a consequence, in scanning tunnelling spectroscopy (STS), sharp, bias symmetric sub-gap states identified as Yu-Shiba-Rusinov (YSR) bound states appear against the featureless density of states of a metallic graphene on Ir(111) sample. Although the coupling regime of the magnetic impurity with the SC tip depends on the initial absorption configuration of the molecule, the interaction strength between the SC tip and the charged TCNQ molecule can be reversibly controlled by tuning the tip-sample distance. The controlled transition from one coupling regime to the other allows us to verify the relation between the energy scales of the two competing many-body effects for the functionalized tip. Quenching the SC state of the Nb tip with a magnetic field switches abruptly from a tip dominated by the YSR bound states to a Kondo tip.

5.
Nanoscale ; 14(30): 10880-10888, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35848284

RESUMEN

Engineering the growth of the different phases of two-dimensional transition metal dichalcogenides (2D-TMDs) is a promising way to exploit their potential since the phase determines their physical and chemical properties. Here, we report on the epitaxial growth of monolayer MoTe2 on graphene on an Ir(111) substrate. Scanning tunneling microscopy and spectroscopy provide insights into the structural and electronic properties of the different polymorphic phases, which remain decoupled from the substrate due to the weak interaction with graphene. In addition, we demonstrate a great control of the relative coverage of the relevant 1T' and 1H MoTe2 phases by varying the substrate temperature during the growth. In particular, we obtain large areas of the 1T' phase exclusively or the coexistence of both phases with different ratios.

6.
Phys Chem Chem Phys ; 24(13): 8022-8031, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35315463

RESUMEN

We report on the properties of the thin films of the short peptide L-dialanine grown on Cu(100) surfaces and compare them to those of L-alanine by using surface techniques like XPS, IRRAS and STM. The first dialanine monolayer, in contact with the metallic substrate, is found to consist of whole neutral molecules in the non-zwitterionic state forming a c(2 × 4) pattern with quasi-hexagonal symmetry. The peptide bond of dialanine is preserved in the adsorption state. The ordering of the L-dialanine overlayer is shown to replicate rearrangements of the atoms of the substrate around dislocations of the latter indicating a strong molecule-surface interaction. In the multilayer regime, molecules of the second and further layers are found to be in a zwitterionic state, readily desorbing even at room temperature. The first dialanine layer is tightly bound to the substrate, begins to desorb at temperatures higher than 390 K and cracks down at the surface, transforming into a new moiety, beyond 435 K.


Asunto(s)
Alanina , Dipéptidos , Adsorción , Dipéptidos/química , Temperatura
7.
Nanoscale Horiz ; 6(9): 744-750, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34165121

RESUMEN

The on-surface photogeneration of nonacene from α-bisdiketone precursors deposited on nanostructured epitaxial graphene grown on Ru(0001) has been studied by means of low temperature scanning tunneling microscopy and spectroscopy. The presence of an unoccupied surface state, spatially localized in the regions where the precursors are adsorbed, and energetically accessible in the region of the electromagnetic spectrum where n-π* transitions take place, allows for a 100% conversion of the precursors into nonacenes. With the help of state-of-the-art theoretical calculations, we show that such a high yield is due to the effective population of the surface state by the incoming light and the ensuing electron transfer to the unoccupied states of the precursors through an inelastic scattering mechanism. Our findings are the experimental confirmation that surface states can play a prominent role in the surface photochemistry of complex molecular systems, in accordance with early theoretical predictions made on small molecules.

8.
ACS Appl Mater Interfaces ; 12(3): 4088-4096, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31875389

RESUMEN

The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces. XPS and STM demonstrate that Co atoms evaporated on top of Gr arrange in 3D clusters and, upon thermal annealing, penetrate through and diffuse below Gr in a 2D fashion. The complete intercalation of the metal occurs at specific temperatures, depending on the type of metallic buffer. The activation energy and the optimum temperature for the intercalation processes are determined. We describe a reliable method to fabricate and characterize in situ high-quality Gr-FM/HM heterostructures, enabling the realization of novel spin-orbitronic devices that exploit the extraordinary properties of Gr.

9.
ACS Omega ; 4(14): 15824-15828, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31592149

RESUMEN

Heterostructure devices consisting of graphene and colloidal quantum dots (QDs) have been remarkably successful as photodetectors and have opened the door to technological applications based on the combination of these low-dimensional materials. This work explores the photodetection properties of a heterostructure consisting of a graphene field effect transistor covered by a film of silica-encapsulated colloidal QDs. Defects at the surface of the silica shell trap optically excited charge carriers, which simultaneously enables photodetection via two mechanisms: photogating, resulting in a net p-doping of the device, and Coulombic scattering of charge carriers in the graphene, producing an overall decrease in the current magnitude.

10.
Nano Lett ; 19(8): 5205-5215, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31287707

RESUMEN

We have studied the ambient air oxidation of chemical vapor deposition (CVD) grown monolayers of the semiconducting transition metal dichalcogenide (S-TMD) WS2 using optical microscopy, laser scanning confocal microscopy (LSCM), photoluminescence (PL) spectroscopy, and atomic force microscopy (AFM). Monolayer WS2 exposed to ambient conditions in the presence of light (typical laboratory ambient light for weeks or typical PL spectroscopy map) exhibits damage due to oxidation which can be detected with the LSCM and AFM, though may not be evident in conventional optical microscopy due to poorer contrast and resolution. Additionally, this oxidation was not random and was correlated with "high-symmetry" high intensity edges and red-shifted areas in the PL spectroscopy map, areas thought to contain a higher concentration of sulfur vacancies. In contrast, samples kept in ambient and darkness showed no signs of oxidation for up to 10 months. Low-irradiance/fluence experiments showed that samples subjected to excitation energies at or above the trion excitation energy (532 nm/2.33 eV and 660 nm/1.88 eV) oxidized in as little as 7 days, even for irradiances and fluences 8 and 4 orders of magnitude lower (respectively) than previously reported. No significant oxidation was observed for 760 nm/1.63 eV light exposure, which lies below the trion excitation energy in WS2. The strong wavelength dependence and apparent lack of irradiance dependence suggests that ambient oxidation of WS2 is initiated by photon-mediated electronic band transitions, that is, photo-oxidation. These findings have important implications for prior, present, and future studies concerning S-TMDs measured, stored, or manipulated in ambient conditions.

11.
Nanotechnology ; 29(31): 315705, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-29741492

RESUMEN

Band gap opening of a single-layer graphene nanoribbon (sGNR) sitting on another sGNR, fabricated by drop casting GNR solution on Au(111) substrate in air, was studied by means of scanning tunneling microscopy and spectroscopy in an ultra-high vacuum at 78 K and 300 K. GNRs with a width of ∼45 nm were prepared by unzipping double-walled carbon nanotubes (diameter ∼15 nm) using the ultrasonic method. In contrast to atomically-flat GNRs fabricated via the bottom-up process, the drop cast sGNRs were buckled on Au(111), i.e., some local points of the sGNR are in contact with the substrate (d âˆ¼ 0.5 nm), but other parts float (d âˆ¼ 1-3 nm), where d denotes the measured distance between the sGNR and the substrate. In spite of the fact that the nanoribbons were buckled, dI/dV maps confirmed that each buckled sGNR had a metallic character (∼3.5 Go) with considerable uniform local density of states, comparable to a flat sGNR. However, when two sGNRs crossed each other, the crossed areas showed a band gap between -50 and +200 meV around the Fermi energy, i.e., the only upper sGNR electronic property changed from metallic to p-type semiconducting, which was not due to the bending, but the electronic interactions between the up and down sGNRs.

12.
ACS Appl Mater Interfaces ; 10(8): 6805-6809, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29436818

RESUMEN

This work explores the assembly of large-area heterostructures comprised of a film of silica-encapsulated, semiconducting colloidal quantum dots, deposited via the Langmuir-Blodgett method, sandwiched between two graphene sheets. The luminescent, electrically insulating film served as a dielectric, with the top graphene sheet patterned into an electrode and successfully used as a top gate for an underlying graphene field-effect transistor. This heterostructure paves the way for developing novel hybrid optoelectronic devices through the integration of 2D and 0D materials.

13.
J Phys Chem A ; 122(8): 2232-2240, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29381066

RESUMEN

The structural properties of sulfur superstructures adsorbed on Ru(0001) have been widely studied in the past. However, much less effort has been devoted to determine their electronic properties. To understand the connection between structural and electronic properties, we have carried out density functional theory periodic boundary calculations mimicking the four long-range ordered sulfur superstructures identified experimentally by means of scanning tunneling microscopy (STM) techniques. Our simulations allow us to characterize the nature of the sulfur-Ru bond, the charge transfer between the Ru substrate and the sulfur adlayers, the interface states, and a parabolic state recently identified in STM experiments. A simple analysis, based on a one-dimensional model, reveals that this parabolic state is related to a potential well state, formed in the surface when the concentration of sulfur atoms is large enough to generate a new minimum in the surface potential.

14.
Chem Commun (Camb) ; 53(75): 10418-10421, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28880314

RESUMEN

We describe a method to functionalize graphene covalently with 92% yield and 98% site-selectivity and strict spatial periodicity on the nanometer scale. This method could be extended to other functional molecules.

15.
Nano Lett ; 16(1): 355-61, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26624843

RESUMEN

Organic covalent functionalization of graphene with long-range periodicity is highly desirable-it is anticipated to provide control over its electronic, optical, or magnetic properties-and remarkably challenging. In this work we describe a method for the covalent modification of graphene with strict spatial periodicity at the nanometer scale. The periodic landscape is provided by a single monolayer of graphene grown on Ru(0001) that presents a moiré pattern due to the mismatch between the carbon and ruthenium hexagonal lattices. The moiré contains periodically arranged areas where the graphene-ruthenium interaction is enhanced and shows higher chemical reactivity. This phenomenon is demonstrated by the attachment of cyanomethyl radicals (CH2CN(•)) produced by homolytic breaking of acetonitrile (CH3CN), which is shown to present a nearly complete selectivity (>98%) binding covalently to graphene on specific atomic sites. This method can be extended to other organic nitriles, paving the way for the attachment of functional molecules.

16.
Nanoscale ; 6(24): 15271-9, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25382549

RESUMEN

Achieving control over the self-organization of functional molecules on graphene is critical for the development of graphene technology in organic electronic and spintronic. Here, by using a scanning tunneling microscope (STM), we show that the electron acceptor molecule 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) and its fluorinated derivative 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyano-p-quinodimethane (F4-TCNQ), co-deposited on the surface of epitaxial graphene on Ru(0001), transform spontaneously into their corresponding magnetic anions and self-organize in two remarkably different structures. TCNQ forms densely packed linear magnetic arrays, while F4-TCNQ molecules remain as isolated non interacting magnets. With the help of density functional theory (DFT) calculations, we trace back the origin of this behavior in the competition between the intermolecular repulsion experienced by the individual charged anions, which tends to separate the molecules, and the delocalization of the electrons transferred from the surface to the molecules, which promotes the formation of molecular oligomers. Our results demonstrate that it is possible to control the spatial arrangement of organic magnetic anions co-adsorbed on a surface by means of chemical substitution, paving the way for the design of two-dimensional fully organic magnetic structures on graphene and on other surfaces.

17.
Nano Lett ; 14(8): 4560-7, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25054236

RESUMEN

TCNQ molecules are used as a sensitive probe for the Kondo response of the electron gas of a nanostructured graphene grown on Ru(0001) presenting a moiré pattern. All adsorbed molecules acquired an extra electron by charge transfer from the substrate, but only those adsorbed in the FCC-Top areas of the moiré show magnetic moment and Kondo resonance in the STS spectra. DFT calculations trace back this behavior to the existence of a surface resonance in the low areas of the graphene moiré, whose density distribution strongly depends on the stacking sequence of the moiré area and effectively quenches the magnetic moment for HCP-Top sites.


Asunto(s)
Grafito/química , Nanoestructuras/química , Nitrilos/química
18.
J Phys Condens Matter ; 25(48): 484007, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24201116

RESUMEN

We report here on the molecular self-assembly of 7, 7', 8, 8' tetracyanoquinodimethane (TCNQ) (schematic representation of the molecule on figure 1(b)) on a single-crystal Cu(111) surface, followed by deposition of Fe and Mn, and on the formation of an ordered metal­organic coordination network of Fe (or Mn)­TCNQ units, which contains magnetic ions separated by 0.9 nm.

19.
Ultramicroscopy ; 122: 1-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22955323

RESUMEN

An in situ tip preparation procedure compatible with ultra-low temperature and high magnetic field scanning tunneling microscopes is presented. This procedure does not require additional preparation techniques such as thermal annealing or ion milling. It relies on the local electric-field-induced deposition of material from the tip onto the studied surface. Subsequently, repeated indentations are performed onto the sputtered cluster to mechanically anneal the tip apex and thus to ensure the stability of the tip. The efficiency of this method is confirmed by comparing the topography and spectroscopy data acquired with either unprepared or in situ prepared tips on epitaxial graphene grown on Ru (0001). We demonstrate that the use of in situ prepared tips increases the stability of the scanning tunneling images and the reproducibility of the spectroscopic measurements.

20.
Chem Commun (Camb) ; 46(43): 8198-200, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-20927433

RESUMEN

Graphene grown on Ir(111) electronically decouples adsorbed molecules from the metallic substrate and allows the study of their self-organization on surfaces. We study two electron acceptor molecules from the same family. The intermolecular interaction, attractive for TCNQ and repulsive for F(4)-TCNQ, dictates the molecular ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...