Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2514: 53-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771418

RESUMEN

Vasculogenic mimicry is a cellular mechanism in which tumor cells grow and align forming complex three-dimensional (3D) channel-like structures in a hypoxic microenvironment. This phenomenon represents a novel oxygen, nutrient, and blood supply, in a similar way as occurs in classic angiogenesis. Vasculogenic mimicry has been described in numerous clinical tumors including breast, prostate, lung, and ovarian cancers where it is associated with poor prognosis; thus, it is considered as a hallmark of highly aggressive and metastatic tumors. Here, we describe a simple method to model the in vitro formation of three-dimensional cellular networks over Matrigel in SKOV3 ovarian cancer cells representing the early stages of vasculogenic mimicry.


Asunto(s)
Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Diferenciación Celular , Línea Celular Tumoral , Femenino , Humanos , Masculino , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Microambiente Tumoral
2.
BMC Dev Biol ; 21(1): 11, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34445959

RESUMEN

BACKGROUND: Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available. METHODS: A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. RESULTS: At L3-L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal-ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. CONCLUSIONS: A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages.


Asunto(s)
Aedes , Arbovirus , Animales , Drosophila melanogaster , Mosquitos Vectores , Sarcómeros
3.
Sci Rep ; 10(1): 10555, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601379

RESUMEN

Chemotherapy activates a novel cytoplasmic DNA damage response resulting in Golgi apparatus fragmentation and cancer cell survival. This mechanism is regulated by Golgi phosphoprotein-3 (GOLPH3)/Myo18A/F-actin axis. Analyzing the functions of miR-3135b, a small non-coding RNA with unknown functions, we found that its forced overexpression attenuates the Golgi apparatus fragmentation induced by chemotherapeutic drugs in colorectal cancer (CRC) cells. First, we found that miR-3135b is downregulated in CRC cell lines and clinical tumors. Bioinformatic predictions showed that miR-3135b could be regulating protein-encoding genes involved in cell survival, resistance to chemotherapy, and Golgi dynamics. In agreement, ectopic transfection of miR-3135b in HCT-15 cancer cells significantly inhibited cell proliferation, sensitized cells to 5-fluoruracil (5-FU), and promoted late apoptosis and necrosis. Also, miR-3135b overexpression impaired the cell cycle progression in HCT-15 and SW-480 cancer cells. Because GOLPH3, a gene involved in maintenance of Golgi structure, was predicted as a potential target of miR-3135b, we studied their functional relationships in response to DNA damage induced by chemotherapy. Immunofluorescence and cellular ultrastructure experiments using antibodies against TGN38 protein, a trans-Golgi network marker, showed that 5-FU and doxorubicin treatments result in an apoptosis-independent stacks dispersal of the Golgi ribbon structure in both HCT-15 and SW-480 cells. Remarkably, these cellular effects were dramatically hindered by transfection of miR-3135b mimics. In addition, our functional studies confirmed that miR-3135b binds to the 3'-UTR of GOLPH3 proto-oncogene, and also reduces the levels of p-AKT1 (Ser473) and p-mTOR (Ser2448) signaling transducers, which are key in cell survival and autophagy activation. Moreover, we found that after treatment with 5-FU, TGN38 factor coimmunolocalizes with beclin-1 autophagic protein in discrete structures associated with the fragmented Golgi, suggesting that the activation of pro-survival autophagy is linked to loss of Golgi integrity. These cellular effects in autophagy and Golgi dispersal were reversed by miR-3135b. In summary, we provided experimental evidence suggesting for the first time a novel role for miR-3135b in the protection of chemotherapy-induced Golgi fragmentation via GOLPH3/AKT1/mTOR axis and protective autophagy in colorectal cancer cells.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regiones no Traducidas 3' , Apoptosis/fisiología , Autofagia/fisiología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Daño del ADN , Aparato de Golgi/metabolismo , Humanos , MicroARNs/genética , Proto-Oncogenes Mas , Transducción de Señal
5.
Dev Comp Immunol ; 112: 103753, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32526289

RESUMEN

In hematophagous insects, the midgut is a fundamental barrier against infections and limits the development and transmission of pathogens. However, in mosquitoes, cell differentiation, proliferation, and cell cycle process in the midgut have not been characterized. Here we provide evidence of how cell cycle progression occurs in the newly emerged Anopheles albimanus mosquito midgut and describing cyclins expression as mediators of the cell cycle. The cell cycle at different post-emergence times was evaluated in disaggregated cells from midgut tissue using flow cytometry. Also, cyclins A, B, and E were identified by bioinformatics tools. These cyclins were used to analyze cell cycle progression. Flow cytometry data and the expression-pattern of the cyclins by qRT-PCR supported a polyploidy process, besides mitosis marker was marginally detected and only in newly emerged mosquitoes. Our results suggest that DNA increment in midguts occurs by polyploidy during the first hours post-emergence.


Asunto(s)
Anopheles/fisiología , Ciclinas/metabolismo , Enterocitos/fisiología , Proteínas de Insectos/metabolismo , Intestinos/citología , Animales , Ciclo Celular , Células Cultivadas , Biología Computacional , Ciclinas/genética , Replicación del ADN , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Estadios del Ciclo de Vida , Filogenia , Poliploidía
6.
Front Oncol ; 9: 381, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157166

RESUMEN

Vasculogenic mimicry (VM) is a novel cancer hallmark in which malignant cells develop matrix-associated 3D tubular networks with a lumen under hypoxia to supply nutrients needed for tumor growth. Recent studies showed that microRNAs (miRNAs) may have a role in VM regulation. In this study, we examined the relevance of hypoxia-regulated miRNAs (hypoxamiRs) in the early stages of VM formation. Data showed that after 48 h hypoxia and 12 h incubation on matrigel SKOV3 ovarian cancer cells undergo the formation of matrix-associated intercellular connections referred hereafter as 3D channels-like structures, which arose previous to the apparition of canonical tubular structures representative of VM. Comprehensive profiling of 754 mature miRNAs at the onset of hypoxia-induced 3D channels-like structures showed that 11 hypoxamiRs were modulated (FC>1.5; p < 0.05) in SKOV3 cells (9 downregulated and 2 upregulated). Bioinformatic analysis of the set of regulated miRNAs showed that they might impact cellular pathways related with tumorigenesis. Moreover, overall survival analysis in a cohort of ovarian cancer patients (n = 485) indicated that low miR-765, miR-193b, miR-148a and high miR-138 levels were associated with worst patients outcome. In particular, miR-765 was severely downregulated after hypoxia (FC < 32.02; p < 0.05), and predicted to target a number of protein-encoding genes involved in angiogenesis and VM. Functional assays showed that ectopic restoration of miR-765 in SKOV3 cells resulted in a significant inhibition of hypoxia-induced 3D channels-like formation that was associated with a reduced number of branch points and patterned tubular-like structures. Mechanistic studies confirmed that miR-765 decreased the levels of VEGFA, AKT1 and SRC-α transducers and exerted a negative regulation of VEGFA by specific binding to its 3'UTR. Finally, overall survival analysis of a cohort of ovarian cancer patients (n = 1435) indicates that high levels of VEGFA, AKT1 and SRC-α and low miR-765 expression were associated with worst patients outcome. In conclusion, here we reported a novel hypoxamiRs signature which constitutes a molecular guide for further clinical and functional studies on the early stages of VM. Our data also suggested that miR-765 coordinates the formation of 3D channels-like structures through modulation of VEGFA/AKT1/SRC-α axis in SKOV3 ovarian cancer cells.

7.
J Eukaryot Microbiol ; 66(4): 654-669, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30620421

RESUMEN

Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.


Asunto(s)
Autofagosomas/fisiología , Macroautofagia/efectos de los fármacos , Biogénesis de Organelos , Trichomonas vaginalis/fisiología , Antiinfecciosos/administración & dosificación , Glucosa/deficiencia , Deficiencias de Hierro , Sirolimus/administración & dosificación
8.
Artículo en Inglés | MEDLINE | ID: mdl-28293543

RESUMEN

Entamoeba histolytica is the protozoa parasite responsible of human amoebiasis, disease that causes from 40,000 to 100,000 deaths annually worldwide. However, few are known about the expression regulation of molecules involved in its pathogenicity. Transcription of some virulence-related genes is positively controlled by the cis-regulatory element named URE1. Previously we identified the transcription factor that binds to URE1, which displayed a nuclear and cytoplasmic localization. This protein belongs to the Tudor Staphyococcal nuclease (TSN) family, which in other systems participates in virtually all pathways of gene expression, suggesting that this amoebic transcription factor (EhTSN; former EhURE1BP) could also play multiple functions in E. histolytica. The aim of this study was to identify the possible cellular events where EhTSN is involved. Here, we found that EhTSN in nucleus is located in euchromatin and close to, but not into, heterochromatin. We also showed the association of EhTSN with proteins involved in transcription and that the knockdown of EhTSN provokes a diminishing in the mRNA level of the EhRabB gene, which in its promoter region contains the URE1 motif, confirming that EhTSN participates in transcription regulation. In cytoplasm, this protein was found linked to the membrane of small vesicles and to plasma membrane. Through pull-down assays and mass spectrometry we identity thirty two candidate proteins to interact with EhTSN. These proteins participate in transcription, metabolism, signaling, and stress response, among other cellular processes. Interaction of EhTSN with some candidate proteins involved in metabolism, and signaling was validated by co-immunoprecipitation or co-localization. Finally we showed the co-localization of EhTSN and HSP70 in putative stress granules during heat shock and that the knockdown of EhTSN increases the cell death during heat shock treatment, reinforcing the hypothesis that EhTSN has a role during stress response. All data support the proposal that EhTSN is a multifunctional protein of E. histolytica.


Asunto(s)
Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Entamoeba histolytica/fisiología , Regulación de la Expresión Génica , Nucleasa Microcócica/genética , Fenómenos Fisiológicos , Clonación Molecular , Citoplasma/metabolismo , ADN Protozoario/química , Entamoeba histolytica/ultraestructura , Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Respuesta al Choque Térmico , Microscopía Inmunoelectrónica , Unión Proteica , Proteínas Protozoarias/genética , ARN Mensajero , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...