Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Neurol ; 14: 878446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456626

RESUMEN

Objectives: To report the first Mexican case with two novel AARS2 mutations causing primary ovarian failure, uterus infantilis, and early-onset dementia secondary to leukoencephalopathy. Methods: Detailed clinical, clinimetric, neuroimaging features, muscle biopsy with biochemical assays of the main oxidative phosphorylation complexes activities, and molecular studies were performed on samples from a Mexican female. Results: We present a 41-year-old female patient with learning difficulties since childhood and primary amenorrhea who developed severe cognitive, motor, and behavioral impairment in early adulthood. Neuroimaging studies revealed frontal leukoencephalopathy with hypometabolism at the fronto-cerebellar cortex and caudate nucleus. Uterus infantilis was detected on ultrasound study. Clinical exome sequencing identified two novel variants, NM_020745:c.2864G>A (p.W955*) and NM_020745:c.1036C>A (p.P346T, p.P346Wfs*18), in AARS2. Histopathological and biochemical studies on muscle biopsy revealed mitochondrial disorder with cytochrome C oxidase (COX) deficiency. Conclusions: Several adult-onset cases of leukoencephalopathy and ovarian failure associated with AARS2 variants have been reported. To our best knowledge, none of them showed uterus infantilis. Here we enlarge the genetic and phenotypic spectrum of AARS2-related dementia with leukoencephalopathy and ovarian failure and contribute with detailed clinical, clinometric, neuroimaging, and molecular studies to disease and novel molecular variants characterization.

2.
Bol. méd. Hosp. Infant. Méx ; 74(3): 175-180, May.-Jun. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-888613

RESUMEN

Abstract: Background: Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. Methods: Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. Results: Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. Conclusions: These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options.


Resumen: Introducción: Las mitocondriopatías son enfermedades multisistémicas que afectan el funcionamiento de la fosforilación oxidativa (OXPHOS). Un buen modelo de estudio para estas enfermedades es el cultivo primario de fibroblastos. En este trabajo se utilizaron fibroblastos con mitocondriopatía del complejo IV para determinar cuáles son las principales funciones afectadas en esta enfermedad. Métodos: Se realizaron cultivos primarios de fibroblastos para corroborar el fenotipo de la enfermedad. Las mitocondrias se aislaron de estas células y se extrajo su proteoma para su identificación. Las proteínas identificadas se validaron con la base de datos de MitoMiner. Resultados: Los fibroblastos conservaron el fenotipo de la enfermedad que incluye un defecto del complejo IV. El proteoma mitocondrial de estas células mostró que las proteínas más afectadas pertenecen al sistema de OXPHOS, principalmente los complejos que forman supercomplejos o respirosomas (I, III, IV y V). El defecto en el complejo IV al parecer se debió a problemas de ensamblaje que pueden evitar la formación de los supercomplejos y la eficiente canalización de sustratos. También se observó que esta mitocondriopatía afecta otros procesos relacionados con el flujo de información genética del DNA (replicación, transcripción y traducción), así como con la beta oxidación y el ciclo de los ácidos tricarboxílicos (TCA). Conclusiones: En conjunto, estos datos podrían utilizarse para una mejor clasificación de estas enfermedades, así como para la optimización de las opciones de manejo y tratamiento.


Asunto(s)
Humanos , Deficiencia de Citocromo-c Oxidasa/patología , Proteómica/métodos , Fibroblastos/patología , Mitocondrias/patología , Fosforilación Oxidativa , ADN/genética , Proteínas/metabolismo , Células Cultivadas , Ciclo del Ácido Cítrico/fisiología
3.
Bol Med Hosp Infant Mex ; 74(3): 175-180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29382484

RESUMEN

BACKGROUND: Mitochondriopathies are multisystem diseases affecting the oxidative phosphorylation (OXPHOS) system. Skin fibroblasts are a good model for the study of these diseases. Fibroblasts with a complex IV mitochondriopathy were used to determine the molecular mechanism and the main affected functions in this disease. METHODS: Skin fibroblast were grown to assure disease phenotype. Mitochondria were isolated from these cells and their proteome extracted for protein identification. Identified proteins were validated with the MitoMiner database. RESULTS: Disease phenotype was corroborated on skin fibroblasts, which presented a complex IV defect. The mitochondrial proteome of these cells showed that the most affected proteins belonged to the OXPHOS system, mainly to the complexes that form supercomplexes or respirosomes (I, III, IV, and V). Defects in complex IV seemed to be due to assembly issues, which might prevent supercomplexes formation and efficient substrate channeling. It was also found that this mitochondriopathy affects other processes that are related to DNA genetic information flow (replication, transcription, and translation) as well as beta oxidation and tricarboxylic acid cycle. CONCLUSIONS: These data, as a whole, could be used for the better stratification of these diseases, as well as to optimize management and treatment options.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/patología , Fibroblastos/patología , Mitocondrias/patología , Proteómica/métodos , Células Cultivadas , Ciclo del Ácido Cítrico/fisiología , ADN/genética , Humanos , Fosforilación Oxidativa , Proteínas/metabolismo
4.
Neurogenetics ; 13(4): 375-86, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22986587

RESUMEN

Mammalian complex V (F1F0-ATP synthase or ATPase) uses the proton gradient to generate ATP during oxidative phosphorylation and requires several helper proteins, including TMEM70, to form the holoenzyme in a stepwise process in which nuclear DNA is combined with mitochondrial DNA-encoded subunits. We report the clinical and molecular findings in three patients presenting lactic acidosis, 3-methylglutaconic aciduria, and hypertrophic cardiomyopathy. All three showed an isolated defect of fully assembled ATP synthase in association with a "common" (c.317-2A > G) and a new (c.628A > C/p.T210P) variant in TMEM70. Interestingly, one of the patients also showed nitric oxide-responsive pulmonary arterial hypertension, a finding never before associated with TMEM70 deficiency. In addition to widening the clinical and mutational spectrum of defective ATP synthase, our study also suggests that mutant TMEM70 associates in high molecular weight complexes (470-550 kDa) when expressed in Hela cells and exerts a direct action in ATP synthase biogenesis and assembly, mediating the incorporation of F1 moieties.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Proteínas Portadoras/biosíntesis , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Mutación , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Secuencia de Bases , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Ataxia Cerebelosa/genética , Niño , Preescolar , Hipertensión Pulmonar Primaria Familiar , Femenino , Fibroblastos/metabolismo , Células HeLa , Humanos , Hipertensión Pulmonar/genética , Lactante , Errores Innatos del Metabolismo/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Piel/metabolismo
5.
J Bioenerg Biomembr ; 43(6): 683-90, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21993659

RESUMEN

The role of phospholipids in normal assembly and organization of the membrane proteins has been well documented. Cardiolipin, a unique tetra-acyl phospholipid localized in the inner mitochondrial membrane, is implicated in the stability of many inner-membrane protein complexes. Loss of cardiolipin content, alterations in its acyl chain composition and/or cardiolipin peroxidation have been associated with dysfunction in multiple tissues in a variety of pathological conditions. The aim of this study was to analyze the phospholipid composition of the mitochondrial membrane in the four most frequent mutations in the ATP6 gene: L156R, L217R, L156P and L217P but, more importantly, to investigate the possible changes in the cardiolipin profile. Mitochondrial membranes from fibroblasts with mutations at codon 217 of the ATP6 gene, showed a different cardiolipin content compared to controls. Conversely, results similar to controls were obtained for mutations at codon 156. These findings may be attributed to differences in the biosynthesis and remodeling of cardiolipin at the level of the inner mitochondrial transmembrane related to some mutations of the ATP6 gene.


Asunto(s)
Cardiolipinas/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación Missense , Piel/metabolismo , Sustitución de Aminoácidos , Cardiolipinas/genética , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Peroxidación de Lípido/genética , Masculino , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética
6.
Biochem Biophys Res Commun ; 383(1): 58-62, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19332025

RESUMEN

Mitochondrial ATP synthase plays a central role in cell function by synthesising most of the ATP in human tissues. In different cells, active regulation of mitochondrial ATP synthase in response to cellular energy demand has been demonstrated, as well as its alteration under several pathological conditions affecting oxidative phosphorylation (OXPHOS). Traditionally, detection of OXPHOS defects is based on the spectrophotometric measurement of respiratory chain complex activities in muscle biopsies. Considering the broad clinical spectrum of mitochondrial disorders, and the difficulty in arriving at a single diagnostic method, in this study we propose measurement of ATP synthesis in mitochondria from skin fibroblasts as an effective screening tool. In the light of our results this assessment emerges as a useful marker of impaired energy production in primary OXPHOS disorders of childhood and as a tool with the potential to drive further molecular genetic studies.


Asunto(s)
Adenosina Trifosfato/análisis , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Fosforilación Oxidativa , Piel/metabolismo , Adenosina Trifosfato/biosíntesis , Adolescente , Células Cultivadas , Niño , Femenino , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Lactante , Recién Nacido , Masculino , Piel/ultraestructura , Espectrofotometría/métodos
7.
J Cell Biochem ; 106(5): 878-86, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19160410

RESUMEN

The smallest rotary motor of living cells, F0F1-ATP synthase, couples proton flow-generated by the OXPHOS system-from the intermembrane space back to the matrix with the conversion of ADP to ATP. While all mutations affecting the multisubunit complexes of the OXPHOS system probably impact on the cell's output of ATP, only mutations in complex V can be considered to affect this output directly. So far, most of the F0F1-ATP synthase variations have been detected in the mitochondrial ATPase6 gene. In this study, the four most frequent mutations in the ATPase6 gene, namely L156R, L217R, L156P, and L217P, are studied for the first time together, both in primary cells and in cybrid clones. Arginine ("R") mutations were associated with a much more severe phenotype than Proline ("P") mutations, in terms of both biochemical activity and growth capacity. Also, a threshold effect in both "R" mutations appeared at 50% mutation load. Different mechanisms seemed to emerge for the two "R" mutations: the F1 seemed loosely bound to the membrane in the L156R mutant, whereas the L217R mutant induced low activity of complex V, possibly the result of a reduced rate of proton flow through the A6 channel.


Asunto(s)
Genes Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación Missense , Arginina/genética , Células Cultivadas , Fibroblastos/patología , Humanos , Cinética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Fosforilación Oxidativa , Fenotipo , Prolina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA