Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
An Acad Bras Cienc ; 95(suppl 1): e20220766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466538

RESUMEN

A theoretical analysis of free Gibbs Energy and NMR 1H 13C chemical shifts of the effect of introduce methyl groups on diphenyl rings, to produce different isomers of (E)-1-(α,Ꞵ-dimethylbenzylidene)-2,2-diphenylhydrazine, is presented. IR vibrational frequencies, Mulliken charges, molecular electrostatic potential (MEP), Gibbs free energy (G) and 1H- and 13C-NMR chemical shifts were obtained by theoretical calculations. In this analysis it was found that the position of the methyl group affects the values of the 1H- and 13C-NMR chemical shifts and the ∆G and ∆H thermodynamic properties of formation and reaction, these properties vary with the same trend, for the isomers studied. Gibbs free energy calculations show that the theoretical (E)-1-(3,4-Dimethylbenzylidene)-2,2-diphenylhydrazine isomer is the most stable, which explains the success of the experimental synthesis of this compound among the other isomers. For this molecule, the C of the HC=N group is the most nucleophilic and the H is the least acidic. The 1H-NMR chemical shifts of protons show a strong correlation with the C=N distance. It was also observed that methyl affects the ν(C=N) frequencies, the C=N distance increases when the inductive effect of the methyl groups is in the structure.


Asunto(s)
Imagen por Resonancia Magnética , Modelos Teóricos , Espectroscopía de Resonancia Magnética , Isótopos de Carbono , Espectroscopía Infrarroja por Transformada de Fourier
2.
Vaccine ; 40(45): 6489-6498, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36195474

RESUMEN

The rapid spread of COVID-19 on all continents and the mortality induced by SARS-CoV-2 virus, the cause of the pandemic coronavirus disease 2019 (COVID-19) has motivated an unprecedented effort for vaccine development. Inactivated viruses as well as vaccines focused on the partial or total sequence of the Spike protein using different novel platforms such us RNA, DNA, proteins, and non-replicating viral vectors have been developed. The high global need for vaccines, now and in the future, and the emergence of new variants of concern still requires development of accessible vaccines that can be adapted according to the most prevalent variants in the respective regions. Here, we describe the immunogenic properties of a group of theoretically predicted RBD peptides to be used as the first step towards the development of an effective, safe and low-cost epitope-focused vaccine. One of the tested peptides named P5, proved to be safe and immunogenic. Subcutaneous administration of the peptide, formulated with alumina, induced high levels of specific IgG antibodies in mice and hamsters, as well as an increase of IFN-γ expression by CD8+ T cells in C57 and BALB/c mice upon in vitro stimulation with P5. Neutralizing titers of anti-P5 antibodies, however, were disappointingly low, a deficiency that we will attempt to resolve by the inclusion of additional immunogenic epitopes to P5. The safety and immunogenicity data reported in this study support the use of this peptide as a starting point for the design of an epitope restricted vaccine.


Asunto(s)
COVID-19 , Vacunas Virales , Cricetinae , Humanos , Ratones , Animales , SARS-CoV-2 , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunoglobulina G , Péptidos , ARN , Óxido de Aluminio , Anticuerpos Neutralizantes
3.
J Leukoc Biol ; 112(1): 31-45, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35674096

RESUMEN

Leukemogenesis is proposed to result from the continuous interplay between inducive bone marrow (BM) microenvironments and malignant precursor cells. Recent findings point toward an abnormal production of proinflammatory mediators within the BM from acute lymphoblastic leukemia (ALL) patients, although the mechanism underlying this phenomenon is uncertain. Here, we have identified 3 miRNAs, miR-146a-5p, miR-181b-5p, and miR-199b-3p, as potential candidates for TLR8 ligation, which are overexpressed in ALL and show agonist functional binding. When purified from ALL exosomes, they demonstrated their capacity of inducing cytokine production by both, hematopoietic and stromal BM cells. Of note, the exposure of BM cells from ALL patients to the proinflammatory milieu resulting from these miRNAs agonist activity revealed the proliferation of normal progenitors, while poor effects were recorded in the leukemic counterpart. The unconventional roles of the tumor-secreted miRNAs as TLR8 agonist ligands may provide a novel mechanism contributing a tumor-microenvironment feedback loop by switching on proinflammatory pathways that further activate normal hematopoietic precursors and support ALL progression. Secreted B-ALL TLR8-agonist miRNAs are involved in the promotion of proinflammatory microenvironments that target normal hematopoietic cells. B-lineage ALL cells secrete exosomes containing miRNAs endowed with the ability of functionally binding TLR8 in hematopoietic and BM mesenchymal stromal cells. Upon TLR8 signaling, the activation of the NF-kB pathway induces secretion of proinflammatory cytokines that, in turn, promotes cell proliferation in early hematopoietic cell populations, driving a tumor-microenvironment-hematopoietic activation feedback loop that may reduce the normal hematopoietic stem and progenitor cell compartment and facilitate cancer progression.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Médula Ósea/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptor Toll-Like 8/metabolismo , Microambiente Tumoral
4.
FEBS J ; 289(12): 3550-3567, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35038363

RESUMEN

The outer membrane (OM) is an essential component of the Gram-negative bacterial cell envelope. Restricted diffusion of integral OM proteins and lipopolysaccharide (LPS) that constitute the outer leaflet of the OM support a model in which the OM is in a semi-crystalline state. The low fluidity of the OM has been suggested to be an important property of this membrane that even contributes to cell rigidity. The LPS characteristics strongly determine the properties of the OM and the LPS layer fluidity has been measured using different techniques that require specific conditions or are technically challenging. Here, we characterize the Escherichia coli LPS fluidity by evaluating the lateral diffusion of the styryl dye FM4-64FX in fluorescence recovery after photobleaching experiments. This technique allowed us to determine the effect of different conditions and genetic backgrounds on the LPS fluidity. Our results show that a fraction of the LPS can slowly diffuse and that the fluidity of the LPS layer adapts by modifying the diffusion of the LPS and the fraction of mobile LPS molecules.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cationes Bivalentes/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Fluidez de la Membrana , Polimixina B/análisis , Polimixina B/metabolismo , Temperatura
5.
Mol Immunol ; 135: 398-407, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022515

RESUMEN

It's been almost a century since immunologists started using adjuvants as tools to develop more effective vaccines. Despite the rising number of adjuvanted vaccines in the last decades, we still lack knowledge of the adjuvants' effects on antibody response. This study was aimed to test the effect of immunizing mice with the human Inactivated Influenza vaccine (IIV), either alone or combined with different widely used adjuvants on the specific antibody response induced. Differential levels of IgM and IgG subclasses were found with the different adjuvants tested. Higher levels of antibodies did not always correspond with a higher efficacy to interfere with the virus infectivity. Differences in neutralization properties are possibly mediated by the specificity of the repertoire of antibodies induced. The repertoire was studied using a phage display 7-mer peptide library to screen for epitopes/mimotopes recognized by serum pools from vaccinated mice. The selected phage clones included peptides that corresponded to conformational mimotopes since they have no homology with lineal sequences of the Influenza strains' proteins. Five peptides were identified as recognized by sera from mice immunized with the IIV vaccine alone, including peptides from the hemagglutinin stalk domain, and by sera from mice immunized with the vaccine plus the different adjuvants employed. Adjuvants elicited a more diverse repertoire of epitope-recognizing antibodies that recognized epitopes of the HA recombinant globular head. Mimotopes were theoretically located at the neutralizing antigenic sites of the globular head of Influenza A H1N1pdm09, Influenza A H3N2, and Influenza B hemagglutinin. This study illustrates how different adjuvants can modify the extent and quality of humoral immunity against the IIV vaccine and the effectiveness of vaccination.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la Influenza/inmunología , Potencia de la Vacuna , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biología Computacional , Epítopos/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Biblioteca de Péptidos , Vacunación
6.
Biomolecules ; 10(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271940

RESUMEN

Toll-like receptors (TLRs) are transmembrane proteins that are key regulators of innate and adaptive immune responses, particularly TLR4, and they have been identified as potential drug targets for the treatment of disease. Several low-molecular-weight compounds are being considered as new drug targets for various applications, including as immune modulators. Mygalin, a 417 Da synthetic bis-acylpolyamine, is an analog of spermidine that has microbicidal activity. In this study, we investigated the effect of mygalin on the innate immune response based on a virtual screening (VS) and molecular docking analysis. Bone marrow-derived macrophages and the cell lines J774A.1 and RAW 264.7 stimulated with lipopolysaccharide (LPS) were used to confirm the data obtained in silico. Virtual screening and molecular docking suggested that mygalin binds to TLR4 via the protein myeloid differentiation factor 2 (MD-2) and LPS. Macrophages stimulated by mygalin plus LPS showed suppressed gene expression of tumor necrosis factor (TNF-α), interleukine 6 (IL-6), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibition of signaling protein p65 of the nuclear factor κB (NF-κB), resulting in decreased production of nitric oxide (NO) and TNF-α. These results indicate that mygalin has anti-inflammatory potential, being an attractive option to be explored. In addition, we reinforce the importance of virtual screening analysis to assist in the discovery of new drugs.


Asunto(s)
Simulación del Acoplamiento Molecular , Espermidina/análogos & derivados , Receptor Toll-Like 4/metabolismo , Animales , Inmunidad Innata/efectos de los fármacos , Ratones , Conformación Proteica , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Espermidina/metabolismo , Espermidina/farmacología , Receptor Toll-Like 4/química
7.
Biomolecules, v. 10, n. 12, 1624, dez. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3380

RESUMEN

Toll-like receptors (TLRs) are transmembrane proteins that are key regulators of innate and adaptive immune responses, particularly TLR4, and they have been identified as potential drug targets for the treatment of disease. Several low-molecular-weight compounds are being considered as new drug targets for various applications, including as immune modulators. Mygalin, a 417 Da synthetic bis-acylpolyamine, is an analog of spermidine that has microbicidal activity. In this study, we investigated the effect of mygalin on the innate immune response based on a virtual screening (VS) and molecular docking analysis. Bone marrow-derived macrophages and the cell lines J774A.1 and RAW 264.7 stimulated with lipopolysaccharide (LPS) were used to confirm the data obtained in silico. Virtual screening and molecular docking suggested that mygalin binds to TLR4 via the protein myeloid differentiation factor 2 (MD-2) and LPS. Macrophages stimulated by mygalin plus LPS showed suppressed gene expression of tumor necrosis factor (TNF-α), interleukine 6 (IL-6), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibition of signaling protein p65 of the nuclear factor κB (NF-κB), resulting in decreased production of nitric oxide (NO) and TNF-α. These results indicate that mygalin has anti-inflammatory potential, being an attractive option to be explored. In addition, we reinforce the importance of virtual screening analysis to assist in the discovery of new drugs.

8.
PLoS One ; 12(6): e0178846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28582454

RESUMEN

Imidazoquinolines are powerful immunostimulants (IMMS) that function through Toll-like receptors, particularly TLR7 and TLR8. In addition to enhancing the immune response, IMMS also function as antineoplastic drugs and vaccine adjuvants. These small compounds display almost the same molecular structure, except in some cases in which atom in position 1 varies and changes the imidazole characteristics. A variable acyclic side chain is also always attached at atom in position 2, while another chain may be attached at atom in position 1. These structural differences alter immune responses, such as the production of interferon regulatory factor and nuclear factor-κB (IRF-NFκB). In this work, quantum mechanics theory and computational chemistry methods were applied to study the physicochemical properties of the crystal binding site of TLR8 complexed with the following six IMMS molecules: Hybrid-2, XG1-236, DS802, CL075, CL097 and R848 (resiquimod). The PDB IDs of the crystals were: 4R6A, 4QC0, 4QBZ, 3W3K, 3W3J, and 3W3N respectively. Thus, were calculated, the total energy, solvation energy, interaction energy (instead of free energy) of the system and interaction energy of the polar region of the IMMS. Additionally, the dipole moment, electrostatic potential, polar surface, atomic charges, hydrogen bonds, and polar and hydrophobic interactions, among others, were assessed. Together, these properties revealed important differences among the six TLR8-immunostimulant complexes, reflected as different interaction energies and therefore different electrostatic environments and binding energies. Remarkably, the interaction energy of a defined polar region composed of the highly polarized N3, N5 atoms and the N11 amino group, acted as a polar pharmacophore that correlates directly with the reported immunopharmacological potency of the six complexed molecules. Based on these results, it was concluded that accurate physicochemical analysis of the crystal binding site could reveal the binding energy (measured as interaction energy) and associated molecular mechanism of action between IMMS and TLR8. These findings may facilitate the development and design of improved small molecules with IMMS properties that are targeted to the TLR system and have enhanced pharmacological effectiveness and reduced toxicity.


Asunto(s)
Adyuvantes Inmunológicos/química , Imidazoles/química , Quinolinas/química , Receptor Toll-Like 8/química , Secuencias de Aminoácidos , Sitios de Unión , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad Cuantitativa , Electricidad Estática , Termodinámica , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/inmunología
9.
J Steroid Biochem Mol Biol ; 163: 51-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27045679

RESUMEN

An investigation of aspects ranging from behavior to molecular electronic structure and physicochemical properties was performed to explore the role of 5α-pregnanedione (5α-DHP), 5ß-pregnanedione (5ß-DHP) and their precursor progesterone (P) on the concurrent inhibition of the sexual lordosis response in female rats. The concurrent inhibition of lordosis behavior occurs when ovariectomized rodents are primed simultaneously with estradiol (E2) and P. Thus, a second administration of P 40h later fails to induce the expected sexual response that takes place when E2 and P are administered sequentially 40h apart. In this study, it is hypothesized that the modulation of the sexual behavior display depends to some extent on the molecular structure and associated physicochemical properties of steroid hormones such as P and its metabolites. Therefore, these molecules must be studied chemically and structurally to explain their role in sexual behavior, including the concurrent inhibition effect. Analysis of the electronic structure and physicochemical properties demonstrated striking differences in the A-ring region of P, 5α-DHP and 5ß-DHP, particularly in atomic charges, dipole moment (DM) and electrostatic potentials. Similarly, the structural differences between the trans (5α-DHP) and cis (5ß-DHP) configurations were remarkable. 5α-DHP most significantly promoted the concurrent inhibition of the lordosis behavior, followed by P and 5ß-DHP. These data indicate that variations in pregnane structure are related to the extent of the concurrent inhibition effect and also suggest that P may act as a prehormone in certain functions of the central nervous system.


Asunto(s)
5-alfa-Dihidroprogesterona/farmacología , Estradiol/farmacología , Progesterona/farmacología , Conducta Sexual Animal/efectos de los fármacos , Animales , Femenino , Masculino , Ovariectomía , Ratas , Ratas Sprague-Dawley , Conducta Sexual Animal/fisiología , Estereoisomerismo , Técnicas Estereotáxicas , Relación Estructura-Actividad , Factores de Tiempo
10.
Photochem Photobiol Sci ; 14(9): 1660-72, 2015 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-26138670

RESUMEN

During the photoreaction of rhodopsin, retinal isomerizes, rotating the C11[double bond, length as m-dash]C12 π-bond from cis to an all-trans configuration. Unprotonated (UR) or protonated (PR) retinal in the Schiff's base (SB) is related to UV and light vision. Because the UR and PR have important differences in their physicochemical reactivities, we compared the atomic and molecular properties of these molecules using DFT calculations. The C10-C11[double bond, length as m-dash]C12-C13 dihedral angle was rotated from 0° to 180° in 45° steps, giving five conformers, and the following were calculated from them: atomic orbital (AO) contributions to the HOMO and LUMO, atomic charges, bond length, bond order, HOMO, LUMO, hardness, electronegativity, polarizability, electrostatic potential, UV-vis spectra and dipole moment (DM). Similarly, the following were analyzed: the energy profile, hybridization, pyramidalization and the hydrogen-out-of-plane (HOOP) wagging from the H11-C11[double bond, length as m-dash]C12-H12 dihedral angle. In addition, retinal with a water H-bond (HR) in the SB was included for comparison. Interestingly, in the PR, C11 and C12 are totally the LUMO and the HOMO, respectively, and have a large electronegativity difference, which predicts an electron jump in these atoms during photoexcitation. At the same time, the PR showed a longer bond length and lower bond order, with a larger DM, lower HOMO-LUMO gap, lower hardness and higher electronegativity. In addition, the AOs of -45° and -90° conformers changed significantly, from pz to py, during the rotation concomitantly with marked hybridization, smooth pyramidalization and lower HOOP activity. Clearly, the atomic and molecular differences between the UR and PR are overwhelming, including the rotational energy profile and light absorption spectra, which indicates that light absorption of UR and PR is already determined by the retinal characteristics of the SB protonation. The HR-model compared with UR shows a lower energy barrier and a discreet bathochromic effect in the UV region.


Asunto(s)
Protones , Retinaldehído/química , Carbono/química , Hidrógeno/química , Enlace de Hidrógeno , Isomerismo , Rotación , Análisis Espectral , Electricidad Estática , Agua/química
11.
J Steroid Biochem Mol Biol ; 133: 43-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960752

RESUMEN

Synthetic progestins (SPs) are used for regulation of fertility, contraception and hormone replacement therapy. The acetylated medroxyprogesterone (MPA), megestrol (MGA) and chlormadinone (CLA) are related to progesterone (P). Other SPs are 19-nortestosterone derivatives such as: norethisterone (NET), norethynodrel (NED) or the 13-ethyl gonane, levonorgestrel (LNG). We studied MPA, NET, NED and LNG in a dose-response manner to induce sexual receptivity in rats. Results showed that MPA, NET and NED act as partial agonists, with similar or lower potency than P. However, LNG is a full agonist. Additionally, the molecules of MPA, MGA, CLA, NET, NED, LNG, and P, were submitted to computer calculations at ab initio quantum mechanics theory, to obtain their electronic structure and molecular properties. The aim was to correlate their behavioral effect with their physicochemical properties. In addition, the crystals of P, NET and LNG bound to the progesterone receptor (PR) were studied. The PR crystallizes as a dimer forming two monomers (mA and mB), in which Gln725 interacts in either of two possible ways with the C3-carbonyl pharmacophore of progestins. P binds differentially to both PR monomers, while NET binds exclusively as mA and LNG binds only as mB in both monomers with no difference. Energetically, binding of LNG and P to mB, is more favorable than that of NET and P to mA. Consequently, this bimodal mechanism increases the action possibilities of SPs on biological systems. Interestingly, progestin potency depends mostly on local molecular structure and electronic features, prevailing over total molecular properties.


Asunto(s)
Congéneres de la Progesterona/farmacología , Progesterona/farmacología , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Animales , Sitios de Unión , Fenómenos Químicos , Femenino , Modelos Moleculares , Estructura Molecular , Progesterona/química , Congéneres de la Progesterona/química , Multimerización de Proteína , Ratas , Ratas Wistar , Receptores de Progesterona/química , Electricidad Estática , Termodinámica
12.
PLoS One ; 7(8): e42344, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927926

RESUMEN

Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aß 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aß 1-42 in ELISA as well as to Aß aggregates present in AD brain. Aß 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aß 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aß 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Animales , Bovinos , Complejo IV de Transporte de Electrones/química , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
13.
World J Gastroenterol ; 12(27): 4318-24, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16865772

RESUMEN

AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.


Asunto(s)
Adhesivos/análisis , Adhesivos/uso terapéutico , Mucosa Gástrica/patología , Gastritis/tratamiento farmacológico , Opuntia/química , 5'-Nucleotidasa/análisis , Adhesivos/administración & dosificación , Adhesivos/farmacología , Administración Oral , Animales , Colesterol/análisis , Enfermedad Crónica , Citosol/enzimología , Etanol , Mucosa Gástrica/efectos de los fármacos , Gastritis/inducido químicamente , Gastritis/patología , Masculino , Fluidez de la Membrana/efectos de los fármacos , Lípidos de la Membrana/química , Neutrófilos/patología , Fosfolípidos/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Ratas , Ratas Wistar
14.
Steroids ; 71(7): 549-57, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16620897

RESUMEN

The present paper describes a theoretical approach to the catalytic reaction mechanism involved in the conversion of 5-androstene-3,17-dione to 4-androstene-3,17-dione. The model incorporates the side chains of the residues tyrosine (Tyr(14)), aspartate (Asp(38)) and aspartic acid (Asp(99)) of the enzyme Delta(5)-3-ketosteroid isomerase (KSI; EC 5.3.3.1). The reaction involves two steps: first, Asp(38) acts as a base, abstracting the 4beta-H atom (proton) from C-4 of the steroid to form a dienolate as the intermediate; next, the intermediate is reketonized by proton transfer to the 6beta-position. Each step goes through its own transition state. Functional groups of the Tyr(14) and Asp(99) side chains act as hydrogen bond donors to the O1 atom of the steroid, providing stability along the reaction coordinate. Calculations were assessed at high level Hartree-Fock theory, using the 6-31G(*) basis set and the most important physicochemical properties involved in each step of the reaction, such as total energy, hardness, and dipole moment. Likewise, to explain the mechanism of reaction, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), atomic orbital contributions to frontier orbitals formation, encoded electrostatic potentials, and atomic charges were used. Energy minima and transition state geometries were confirmed by vibrational frequency analysis. The mechanism described herein accounts for all of the properties, as well as the flow of atomic charges, explaining both catalytic mechanism and proficiency of KSI.


Asunto(s)
Modelos Químicos , Esteroide Isomerasas/química , Androstenodiona/química , Androstenodiona/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Catálisis , Modelos Moleculares , Estereoisomerismo , Esteroide Isomerasas/metabolismo , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...