Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36986539

RESUMEN

At least half the population in industrialized countries suffers from obesity due to excessive accumulation of adipose tissue. Recently, rice (Oryza sativa) proteins have been considered valuable sources of bioactive peptides with antiadipogenic potential. In this study, the digestibility and bioaccessibility in vitro of a novel protein concentrate (NPC) from rice were determined through INFOGEST protocols. Furthermore, the presence of prolamin and glutelin was evaluated via SDS-PAGE, and their potential digestibility and the bioactivity of ligands against peroxisome proliferator-activated receptor gamma (PPARγ) were explored by BIOPEP UWM and HPEPDOCK. For the top candidates, molecular simulations were conducted using Autodock Vina to evaluate their binding affinity against the antiadipogenic region of PPARγ and their pharmacokinetics and drug-likeness using SwissADME. Simulating gastrointestinal digestion showed a recovery of 43.07% and 35.92% bioaccessibility. The protein banding patterns showed the presence of prolamin (57 kDa) and glutelin (12 kDa) as the predominant proteins in the NPC. The in silico hydrolysis predicts the presence of three and two peptide ligands in glutelin and prolamin fraction, respectively, with high affinity for PPARγ (≤160). Finally, the docking studies suggest that the prolamin-derived peptides QSPVF and QPY (-6.38 & -5.61 kcal/mol, respectively) have expected affinity and pharmacokinetic properties to act as potential PPARγ antagonists. Hence, according to our results, bioactive peptides resulting from NPC rice consumption might have an antiadipogenic effect via PPARγ interactions, but further experimentation and validation in suitable biological model systems are necessary to gain more insight and to provide evidence to support our in silico findings.

2.
Food Chem X ; 14: 100303, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35450143

RESUMEN

Fava bean (Vicia faba L.) is a high-protein crop consumed worldwide and is an exceptional plant-based protein source for human consumption. The present study evaluated in vitro nutritional properties of four different protein flours of fava bean: minimal processed flour (MPF), cooked flour (CF), non-polyphenol protein concentrate (NPP), and polyphenol-protein concentrate (PP). NPP showed the highest protein concentration of 94.39 ±â€¯0.76%. The heat treatment significantly increased the in vitro protein digestibility in CF (94.15 ±â€¯2.45%). NPP and PP showed the highest bioaccessibility, 29.85 ±â€¯1.88 and 33.19 ±â€¯1.65%, respectively, no significant differences. SDS-PAGE analysis revealed bioaccessible low molecular weight peptides (<15 kDa) and legumin and vicilin presence. In silico analysis of bioactive peptides of legumin and vicilin presented high occurrence frequencies of bioactivities, as angiotensin-converting enzyme-inhibitor and dipeptidyl peptidase III/IV inhibitor peptides. This study supports the use and further investigation of fava bean proteins for human nutrition.

3.
Front Nutr ; 9: 790440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308285

RESUMEN

Legumes are associated with gut health benefits, and increasing evidence indicates that their consumption reduces the risk of chronic diseases that include autoimmunity. Beans are rich sources of compounds with health-promoting effects, and recent metabolomic approaches have enabled the comprehensive characterization of the chemical composition of Vicia faba L. This article reviewed whether the phytocompounds in broad beans might modulate the aryl hydrocarbon receptor (AhR), which plays an essential role in autoantigen tolerance as a potential dietary strategy for autoimmune disease management. Therefore, thirty molecules present in Vicia faba of the chemical classes of flavonoids, chalcones, stilbenes, jasmonates, alkaloids, and amino acids, and either a human- or microbiome-derived product of biotransformation, retrieved from the literature or predicted in silico were evaluated by docking for affinity against the ligand-binding domain of AhR. Most analyzed compounds showed high affinity even after their metabolism which indicate that some AhR modulators remain active despite several steps in their biotransformation. Hence, our results suggest that in similitude with the gut metabolism of the tryptophan, phytocompounds mainly polyphenols also lead to metabolites that induce the AhR pathway. Furthermore, wyerone acid, wyerone epoxide, jasmonic acid, stizolamine, vicine, and convicine and their metabolite derivatives are reported for the first time as potential AhR ligands. Overall, chronic consumption of phytochemicals in Vicia faba L. and their gut biotransformation may protect against autoimmune disease pathogenesis by AhR modulation.

4.
Front Nutr ; 8: 661463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136517

RESUMEN

The tepary bean (Phaseolus acutifolius Gray) is a US-Mexico frontier native crop, produces high yields in agriculture, and needs to be reconsidered because of its nutritional and functional properties. This study aimed to determine the technological and nutritional properties of flours and protein concentrates of tepary bean, besides determining an in silico agonist effect of tepary bean lectin to peroxisome proliferator-activated receptor gamma (PPAR-γ). We evaluated the technological properties of raw samples (tepary flour and tepary protein concentrate) and cooked samples (tepary flour and tepary protein concentrate). The flours present a significant difference (p < 0.05) concerning protein concentrates in water absorption and oil absorption capacity. The raw samples' emulsifying capacity was higher than that reported in the literature for other legumes, but not the cooked samples. The samples' foaming capacity had no significant difference in treatments (p > 0.05), and cooked tepary bean protein concentrate presented complete gelation at a lower concentration (2%). Nutritionally, raw samples present a protein percentage of 23.46 ± 0.06 and 71.38 ± 0.44 and cooked samples present a protein percentage of 25.27 ± 0.04 and 62.69 ± 0.14; a chemical score of 72, 86, 82, and 72; in vitro protein digestibility (%) = 48.20 ± 0.31, 49.80 ± 0.80, 61.77 ± 1.70, and 63.61 ± 4.19; and C-PER = 0.86, 1.34, 1.93, and 1.81, respectively. All the samples showed methionine + cysteine as the limiting amino acid. All these nutritional data are very similar to the common bean (Phaseolus vulgaris). SDS-PAGE preserves the lectin fraction in both protein concentrates. The in silico study of tepary lectin (PDB: 6tt9) shows that there were seven peptides that presented values below -120 kcal/mol: PEW, VSVGF, PSQK, TTPW, ATSF, ITY, and TSF, with VSVGF, PSQK, and PEW having the highest affinity for active sites of the PAPRγ receptor (binding energies from -5.32 to -7.04 kcal/mol). These peptides could show antiadipogenic or antidiabetic activity based on the intermolecular bond energies and open an interesting research item.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA