Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 780, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566263

RESUMEN

Microplastics have been extensively documented in marine ecosystems and food webs with devastating impacts. To solve this global crisis, identifying the polymer composition is key for resolving the material origin, geographic source, and ecosystem life cycle of ocean plastics. Visually based techniques, importantly, are not diagnostic. Raman spectroscopy is an increasingly preferred identification method for its accuracy and reduced likelihood of misinterpretation, though it can be inaccessible due to cost of paywalled spectral libraries and availability of relevant polymer spectra for comparison. Here, we provide an open-access reference library of high-quality, broad-spectrum Raman spectra of major polymer categories germane to marine environments. The library includes high-quality spectra from: (a) pristine anthropogenic polymers newly sourced from manufacturers (n = 40), (b) weathered anthropogenic polymers collected from used consumer, beachcast, agricultural, and fishery sources (n = 22), and (c) biological polymers representing diverse marine taxa, trophic levels, and tissues (n = 17). We hope this reference library can help this rapidly expanding scientific community and facilitate progress in the global plastic pollution crisis.

2.
Sci Data ; 9(1): 142, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365676

RESUMEN

Species occurrence records are vital data streams in marine conservation with a wide range of important applications. From 2001-2020, the Monterey Bay Aquarium led an international research collaboration to understand the life cycle, ecology, and behavior of white sharks (Carcharodon carcharias) in the southern California Current. The collaboration was devoted to tagging juveniles with animal-borne sensors, also known as biologging. Here we report the full data records from 59 pop-up archival (PAT) and 20 smart position and temperature transmitting (SPOT) tags that variously recorded pressure, temperature, and light-level data, and computed depth and geolocations for 63 individuals. Whether transmitted or from recovered devices, raw data files from successful deployments (n = 70) were auto-ingested from the manufacturer into the United States (US) Animal Telemetry Network's (ATN) Data Assembly Center (DAC). There they have attributed a full suite of metadata, visualized within their public-facing data portal, compiled for permanent archive under the DataONE Research Workspace member node, and are accessible for download from the ATN data portal.


Asunto(s)
Ecosistema , Tiburones , Animales , Bases de Datos Factuales , Telemetría
3.
Dis Aquat Organ ; 147: 25-31, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34789585

RESUMEN

Aquaculture is an increasingly important food resource, but its sustainability is often limited by disease. In Scombridae fishes, puffy snout syndrome (PSS) is a debilitating condition where tumor-like collagenous growths form around the eyes, nares, and mandibles which impair vision and feeding and frequently lead to mortality. While PSS is considered an infectious or metabolic disease, no disease agents or promoters have been identified. Here, we used electron microscopy (EM) to describe the cellular pathology and search for etiological agents of PSS in Pacific mackerel Scomber japonicus, the first use of this approach for PSS. We examined aquaculture specimens across a range of apparent PSS severity, comparing the results to both wild and aquaculture asymptomatic mackerel. EM imagery consistently revealed viral-like particles in PSS samples, as well as the uniform absence of bacteria, protists, fungi, and other multicellular parasites. In addition to viral-like particles, symptomatic fish had a higher mean percentage of swollen and disintegrating mitochondria than both asymptomatic aquaculture and wild mackerel. This suggests that degraded mitochondria may be related to PSS and could be important to further understanding the origin, promoters, and prevention of PSS. This study serves as a first step in identifying the etiological agents of PSS.


Asunto(s)
Mitofagia , Perciformes , Animales , Eucariontes , Peces , Microscopía Electrónica/veterinaria
5.
Sci Adv ; 7(29)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34261645

RESUMEN

One challenge in climate change communication is that the causes and impacts of global warming are unrelated at local spatial scales. Using high-resolution datasets of historical anthropogenic greenhouse emissions and an ensemble of 21st century surface temperature projections, we developed a spatially explicit index of local climate disparity. This index identifies positive (low emissions, large temperature shifts) and negative disparity regions (high emissions, small temperature shifts), with global coverage. Across all climate change projections we analyzed, 99% of the earth's surface area has a positive index value. This result underscores that while emissions are geographically concentrated, warming is globally widespread. From our index, the regions of the greatest positive disparity appear concentrated in the polar arctic, Central Asia, and Africa with negative disparity regions in western Europe, Southeast Asia, and eastern North America. Straightforward illustrations of this complex relationship may inform on equity, enhance public understanding, and increase collective global action.

6.
Sci Rep ; 11(1): 3373, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564038

RESUMEN

During the 2014-2016 North Pacific marine heatwave, unprecedented sightings of juvenile white sharks (Carcharodon carcharias) emerged in central California. These records contradicted the species established life history, where juveniles remain in warmer waters in the southern California Current. This spatial shift is significant as it creates potential conflicts with commercial fisheries, protected species conservation, and public safety concerns. Here, we integrate community science, photogrammetry, biologging, and mesoscale climate data to describe and explain this phenomenon. We find a dramatic increase in white sharks from 2014 to 2019 in Monterey Bay that was overwhelmingly comprised of juvenile sharks < 2.5 m in total body length. Next, we derived thermal preferences from 22 million tag measurements of 14 juvenile sharks and use this to map the cold limit of their range. Consistent with historical records, the position of this cold edge averaged 34° N from 1982 to 2013 but jumped to 38.5° during the 2014-2016 marine heat wave. In addition to a poleward shift, thermally suitable habitat for juvenile sharks declined 223.2 km2 year-1 from 1982 to 2019 and was lowest in 2015 at the peak of the heatwave. In addition to advancing the adaptive management of this apex marine predator, we discuss this opportunity to engage public on climate change through marine megafauna.

7.
Patterns (N Y) ; 1(1): 100005, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33205082

RESUMEN

Learning from the rapidly growing body of scientific articles is constrained by human bandwidth. Existing methods in machine learning have been developed to extract knowledge from human language and may automate this process. Here, we apply sentiment analysis, a type of natural language processing, to facilitate a literature review in reintroduction biology. We analyzed 1,030,558 words from 4,313 scientific abstracts published over four decades using four previously trained lexicon-based models and one recursive neural tensor network model. We find frequently used terms share both a general and a domain-specific value, with either positive (success, protect, growth) or negative (threaten, loss, risk) sentiment. Sentiment trends suggest that reintroduction studies have become less variable and increasingly successful over time and seem to capture known successes and challenges for conservation biology. This approach offers promise for rapidly extracting explicit and latent information from a large corpus of scientific texts.

8.
Biol Lett ; 16(10): 20200609, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33108982

RESUMEN

Progress in global shark conservation has been limited by constraints to understanding the species composition and geographic origins of the shark fin trade. Previous assessments that relied on earlier genetic techniques and official trade records focused on abundant pelagic species traded between Europe and Asia. Here, we combine recent advances in DNA barcoding and species distribution modelling to identify the species and source the geographic origin of fins sold at market. Derived models of species environmental niches indicated that shark fishing effort is concentrated within Exclusive Economic Zones, mostly in coastal Australia, Indonesia, the United States, Brazil, Mexico and Japan. By coupling two distinct tools, barcoding and niche modelling, our results provide new insights for monitoring and enforcement. They suggest stronger local controls of coastal fishing may help regulate the unsustainable global trade in shark fins.


Asunto(s)
Tiburones , Animales , Asia , Australia , Brasil , Conservación de los Recursos Naturales , Europa (Continente) , Japón , México , Tiburones/genética
9.
Ecol Evol ; 10(16): 8592-8609, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884643

RESUMEN

Reliable age estimation is an essential tool to assess the status of wildlife populations and inform successful management. Aging methods, however, are often limited by too few data, skewed demographic representation, and by single or uncertain morphometric relationships. In this study, we synthesize age estimates in southern sea otters Enhydra lutris nereis from 761 individuals across 34 years of study, using multiple noninvasive techniques and capturing all life stages from 0 to 17 years of age. From wild, stranded, and captive individuals, we describe tooth eruptions, tooth wear, body length, nose scarring, and pelage coloration across ontogeny and fit sex-based growth functions to the data. Dental eruption schedules provided reliable and identifiable metrics spanning 0.3-9 months. Tooth wear was the most reliable predictor of age of individuals aged 1-15 years, which when combined with total length, explained >93% of observed age. Beyond age estimation, dental attrition also indicated the maximum lifespan of adult teeth is 13‒17 years, corresponding with previous estimates of life expectancy. Von Bertalanffy growth function model simulations of length at age gave consistent estimates of asymptotic lengths (male Loo  = 126.0‒126.8 cm, female Loo  = 115.3‒115.7 cm), biologically realistic gestation periods (t 0 = 115 days, SD = 10.2), and somatic growth (male k = 1.8, SD = 0.1; female k = 2.1, SD = 0.1). Though exploratory, we describe how field radiographic imaging of epiphyseal plate development or fusions may improve aging of immature sea otters. Together, our results highlight the value of integrating information from multiple and diverse datasets to help resolve conservation problems.

10.
Proc Biol Sci ; 287(1929): 20200732, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546101

RESUMEN

Planning for future ocean conditions requires historical data to establish more informed ecological baselines. To date, this process has been largely limited to instrument records and observations that begin around 1950. Here, we show how marine macroalgae specimens from herbaria repositories may document long-term ecosystem processes and extend historical information records into the nineteenth century. We tested the effect of drying and pressing six macroalgae species on amino acid, heavy metal and bulk stable isotope values over 1 year using modern and archived paper. We found historical paper composition did not consistently affect values. Certain species, however, had higher variability in particular metrics while others were more consistent. Multiple herbaria provided Gelidium (Rhodophyta) samples collected in southern Monterey Bay from 1878 to 2018. We examined environmental relationships and found δ15N correlated with the Bakun upwelling index, the productivity regime of this ecosystem, from 1946 to 2018. Then, we hindcasted the Bakun index using its derived relationship with Gelidium δ15N from 1878 to 1945. This hindcast provided new information, observing an upwelling decrease mid-century leading up to the well-known sardine fishery crash. Our case study suggests marine macroalgae from herbaria are an underused resource of the marine environment that precedes modern scientific data streams.


Asunto(s)
Ecosistema , Algas Marinas , California , Movimientos del Agua
11.
PLoS One ; 15(2): e0228065, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32023269

RESUMEN

Understanding the distribution of life's variety has driven naturalists and scientists for centuries, yet this has been constrained both by the available data and the models needed for their analysis. Here we compiled data for over 67,000 marine and terrestrial species and used artificial neural networks to model species richness with the state and variability of climate, productivity, and multiple other environmental variables. We find terrestrial diversity is better predicted by the available environmental drivers than is marine diversity, and that marine diversity can be predicted with a smaller set of variables. Ecological mechanisms such as geographic isolation and structural complexity appear to explain model residuals and also identify regions and processes that deserve further attention at the global scale. Improving estimates of the relationships between the patterns of global biodiversity, and the environmental mechanisms that support them, should help in efforts to mitigate the impacts of climate change and provide guidance for adapting to life in the Anthropocene.


Asunto(s)
Biodiversidad , Redes Neurales de la Computación , Animales , Clima , Ecosistema , Especificidad de la Especie
12.
13.
Ecol Evol ; 9(11): 6378-6388, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236228

RESUMEN

Complex interactions between protected populations may challenge the recovery of whole ecosystems. In California, white sharks (Carcharodon carcharias) mistargeting southern sea otters (Enhydra lutris nereis) are an emergent impact to sea otter recovery, inhibiting the broader ecosystem restoration sea otters might provide. Here, we integrate and analyze tracking and stranding data to compare the phenology of interactions between white sharks and their targeted prey (elephant seals, Mirounga angustirostris) with those of mistargeted prey (sea otters, humans). Pronounced seasonal peaks in shark bites to otters and humans overlap in the late boreal summer, immediately before the annual adult white shark migration to elephant seal rookeries. From 1997 to 2017, the seasonal period when sharks bite otters expanded from 2 to 8 months of the year and occurred primarily in regions where kelp cover declined. Immature and male otters, demographics most associated with range expansion, were disproportionately impacted. While sea otters are understood to play a keystone role in kelp forests, recent ecosystem shifts are revealing unprecedented bottom-up and top-down interactions. Such shifts challenge ecosystem management programs that rely on static models of species interactions.

14.
Sci Rep ; 9(1): 7843, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171833

RESUMEN

Plastic waste has been documented in nearly all types of marine environments and has been found in species spanning all levels of marine food webs. Within these marine environments, deep pelagic waters encompass the largest ecosystems on Earth. We lack a comprehensive understanding of the concentrations, cycling, and fate of plastic waste in sub-surface waters, constraining our ability to implement effective, large-scale policy and conservation strategies. We used remotely operated vehicles and engineered purpose-built samplers to collect and examine the distribution of microplastics in the Monterey Bay pelagic ecosystem at water column depths ranging from 5 to 1000 m. Laser Raman spectroscopy was used to identify microplastic particles collected from throughout the deep pelagic water column, with the highest concentrations present at depths between 200 and 600 m. Examination of two abundant particle feeders in this ecosystem, pelagic red crabs (Pleuroncodes planipes) and giant larvaceans (Bathochordaeus stygius), showed that microplastic particles readily flow from the environment into coupled water column and seafloor food webs. Our findings suggest that one of the largest and currently underappreciated reservoirs of marine microplastics may be contained within the water column and animal communities of the deep sea.

15.
PLoS One ; 14(4): e0214972, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31017916

RESUMEN

Sea turtle populations are often assessed at the regional to sub-basin scale from discrete indices of nesting abundance. While this may be practical and sometimes effective, widespread in-water surveys may enhance assessments by including additional demographics, locations, and revealing emerging population trends. Here, we describe sea turtle observations from 13 years of towed-diver surveys across 53 coral islands, atolls, and reefs in the Central, West, and South Pacific. These surveys covered more than 7,300 linear km, and observed more than 3,400 green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) sea turtles. From these data, we estimated sea turtle densities, described trends across space and time, and modelled the influence of environmental and anthropogenic drivers. Both species were patchily distributed across spatial scales, and green turtles were 11 times more abundant than hawksbills. The Pacific Remote Island Areas had the highest densities of greens (3.62 turtles km-1, Jarvis Island), while American Samoa had the most hawksbills (0.12 turtles km-1, Ta'u Island). The Hawaiian Islands had the lowest turtle densities (island ave = 0.07 turtles km-1) yet the highest annual population growth (µ = 0.08, σ = 0.22), suggesting extensive management protections can yield positive conservation results. Densities peaked at 27.5°C SST, in areas of high productivity and low human impact, and were consistent with patterns of historic overexploitation. Though such intensive surveys have great value, they are logistically demanding and therefore have an uncertain budget and programmatic future. We hope the methods we described here may be applied to future comparatively low-cost surveys either with autonomous vehicles or with environmental DNA.


Asunto(s)
Arrecifes de Coral , Tortugas/fisiología , Samoa Americana , Animales , Hawaii , Océano Pacífico , Dinámica Poblacional , Tortugas/clasificación
16.
Sci Adv ; 5(3): eaav5948, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30957017

RESUMEN

The complexity of trade networks is a major challenge to controlling wildlife trafficking and illegal, unreported, and unregulated (IUU) fishing. These networks may not be modern inventions, but have developed over centuries, from integrated global markets that preceded modern regulatory policies. To understand these linkages, we curated 150 years of tortoiseshell transactions and derived biologically informed harvest models to estimate the trade in critically endangered hawksbill sea turtles (Eretmochelys imbricata). We find that trade networks concentrated in Southeast Asia harvested 9 million turtles, over six times previous estimates. These networks spread from within the Pacific, to the Indian and Atlantic basins, and became markedly more complex after 1950. Our results further indicate that the magnitude and extent of the coastally restricted hawksbill exploitation parallel current patterns of IUU fishing. Policies to combat these interlinked illegal practices should assimilate the important role of small-scale, coastal fisheries in these increasingly complex global networks.


Asunto(s)
ADN Mitocondrial/análisis , Ecosistema , Explotaciones Pesqueras/economía , Biología Marina/estadística & datos numéricos , Tortugas/fisiología , Animales , Animales Salvajes , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , ADN Mitocondrial/genética , Explotaciones Pesqueras/legislación & jurisprudencia , Haplotipos , Biología Marina/economía , Biología Marina/métodos , Tortugas/genética
17.
PLoS One ; 13(9): e0203124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30188919

RESUMEN

Human activities are exposing organisms not only to direct threats (e.g. habitat loss) but also to indirect environmental pressures such as climate change, which involves not just directional global warming but also increasing climatic variability. Such changes will impact whole communities of organisms and the possible effects on population dynamics have raised concerns about increased extinction rates. Conservation-minded approaches to extinction risk vary from range shifts predicted by climate envelope models with no population dynamics to population viability analyses that ignore environmental variability altogether. Our modelling study shows that these extremes are modelling responses to a spectrum of environmental sensitivity that organisms may exhibit. We show how the survival curve plays a major role in how environmental variability leads to population fluctuations. While it is often supposed that low-fecundity organisms (those with high parental investment) will be the most vulnerable to climate change, it is those with high fecundity (low parental investment) that are likely to be more sensitive to such changes. We also find that abundance variations in high fecundity populations is driven primarily by fluctuations in the survival of early life stages, the more so if those environmental changes are autocorrelated in time. We show which types of conservation actions are most appropriate for a number of real populations. While the most effective conservation actions for organisms of low fecundity is to avoid killing them, for populations with high fecundity (and low parental investment), our study suggests conservation should focus more on protecting early life stages from hostile environments.


Asunto(s)
Cambio Climático , Ambiente , Modelos Biológicos , Animales , Conducta Animal , Extinción Biológica , Fertilidad , Humanos , Mortalidad , Dinámica Poblacional , Procesos Estocásticos , Análisis de Supervivencia
18.
PeerJ ; 6: e4565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29610708

RESUMEN

The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.

19.
Sci Adv ; 4(2): eaao3946, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29457134

RESUMEN

Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.

20.
Ecol Evol ; 6(8): 2378-89, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27110350

RESUMEN

High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0-4 years of age, measuring 8-34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems - entanglement and ingestion of marine debris - and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...