Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Vis Exp ; (193)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036201

RESUMEN

The cortical areas involved in human speech should be characterized reliably prior to surgery for brain tumors or drug-resistant epilepsy. The functional mapping of language areas for surgical decision-making is usually done invasively by electrical direct cortical stimulation (DCS), which is used to identify the organization of the crucial cortical and subcortical structures within each patient. Accurate preoperative non-invasive mapping aids surgical planning, reduces time, costs, and risks in the operating room, and provides an alternative for patients not suitable for awake craniotomy. Non-invasive imaging methods like MRI, fMRI, MEG, and PET are currently applied in presurgical design and planning. Although anatomical and functional imaging can identify the brain regions involved in speech, they cannot determine whether these regions are critical for speech. Transcranial magnetic stimulation (TMS) non-invasively excites the cortical neuronal populations by means of electric field induction in the brain. When applied in its repetitive mode (rTMS) to stimulate a speech-related cortical site, it can produce speech-related errors analogous to those induced by intraoperative DCS. rTMS combined with neuronavigation (nrTMS) enables neurosurgeons to preoperatively assess where these errors occur and to plan the DCS and the operation to preserve the language function. A detailed protocol is provided here for non-invasive speech cortical mapping (SCM) using nrTMS. The proposed protocol can be modified to best fit the patient- and site-specific demands. It can also be applied to language cortical network studies in healthy subjects or in patients with diseases that are not amenable to surgery.


Asunto(s)
Neoplasias Encefálicas , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Habla/fisiología , Mapeo Encefálico/métodos , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Neuronavegación/métodos , Corteza Cerebral/fisiología
3.
J Neural Eng ; 19(6)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541458

RESUMEN

Objective.Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil-head coregistration and the estimated E-field.Approach.By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models.Main results.Average total coregistration accuracies were in the range of 2.2-3.6 mm and 1°; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5-1.9 mm/0.2-0.4° and precisions 0.5-0.8 mm/0.1-0.2° better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8°, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15°/25% to about 2 mm/2°/5% when increasing realism of the E-field model.Significance.The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.


Asunto(s)
Encéfalo , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cabeza , Neuronavegación/métodos , Imagen por Resonancia Magnética/métodos
4.
Neuromodulation ; 25(4): 538-548, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35670063

RESUMEN

OBJECTIVES: Central poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment. MATERIALS AND METHODS: This prospective, randomized, double-blind, sham-controlled three-arm crossover trial assessed navigated rTMS (nrTMS) targeted to M1 and S2 (10 sessions, 5050 pulses per session at 10 Hz). Participants were evaluated for pain, depression, anxiety, health-related quality of life, upper limb function, and three plasticity-related gene polymorphisms including Dopamine D2 Receptor (DRD2). We monitored pain intensity and interference before and during stimulations and at one month. A conditioned pain modulation test was performed using the cold pressor test. This assessed the efficacy of the descending inhibitory system, which may transmit TMS effects in pain control. RESULTS: We prescreened 73 patients, screened 29, and included 21, of whom 17 completed the trial. NrTMS targeted to S2 resulted in long-term (from baseline to one-month follow-up) pain intensity reduction of ≥30% in 18% (3/17) of participants. All stimulations showed a short-term effect on pain (17-20% pain relief), with no difference between M1, S2, or sham stimulations, indicating a strong placebo effect. Only nrTMS targeted to S2 resulted in a significant long-term pain intensity reduction (15% pain relief). The cold pressor test reduced CPSP pain intensity significantly (p = 0.001), indicating functioning descending inhibitory controls. The homozygous DRD2 T/T genotype is associated with the M1 stimulation response. CONCLUSIONS: S2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.


Asunto(s)
Neuralgia , Estimulación Magnética Transcraneal , Método Doble Ciego , Humanos , Neuralgia/terapia , Proyectos Piloto , Estudios Prospectivos , Calidad de Vida , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
5.
Scand J Pain ; 21(4): 831-838, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34019752

RESUMEN

OBJECTIVES: There is no effective evidence-based non-pharmacological treatment for severe neuropathic pain after spinal cord injury (SCI). Paired associative stimulation (PAS) has been used in motor rehabilitation of patients after SCI. In the SCI-PAS protocol for tetraplegic patients, peripheral and central nerve tracts are activated with subject-specific timing, such that ascending and descending signals appear simultaneously at the cervical level. The effect on motor rehabilitation is thought to arise via strengthening of cervical upper and lower motoneuron synapses. We have observed an analgesic effect of PAS on mild-to-moderate neuropathic pain in tetraplegic patients receiving PAS for motor rehabilitation. Here, we applied PAS to a patient with severe drug-resistant neuropathic pain. METHODS: The patient is a 50-year-old man who had a traumatic cervical SCI three years earlier. He has partial paresis in the upper limbs and completely plegic lower limbs. The most severe pain is located in the right upper limb and shoulder region. The pain has not responded to either pharmacological therapy or repetitive-TMS therapy targeted to either primary motor cortex or secondary somatosensory cortex. PAS was targeted to relieve pain in the right upper arm. Peripheral nerve stimulation targeted the median, ulnar, and radial nerves and was accompanied by TMS pulses to the motor representation area of abductor pollicis brevis, abductor digiti minimi, and extensor digitorum communis muscles, respectively. RESULTS: Hand motor function, especially finger abduction and extension, was already enhanced during the first therapy week. Pain decreased at the end of the second therapy week. Pain was milder especially in the evenings. Numerical rating scale scores (evening) decreased 44% and patient estimation of global impression of change was 1, subjectively indicating great benefit when compared to before therapy. Quality of sleep also improved. CONCLUSIONS: The SCI-PAS protocol reduced neuropathic pain in our subject. The mechanism behind the analgesic effect may involve the modulation of nociceptive and sensory neuronal circuits at the spinal cord level. The possibility to use PAS as an adjunct treatment in drug-resistant post-SCI neuropathic pain warrants further investigation and sham-controlled studies. Patients with neuropathic pain due to SCI may benefit from PAS therapy in addition to PAS therapy-induced improvement in motor function.


Asunto(s)
Neuralgia , Preparaciones Farmacéuticas , Analgésicos , Potenciales Evocados Motores , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Estimulación Magnética Transcraneal
6.
Brain Topogr ; 33(1): 1-9, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290050

RESUMEN

The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is commonly applied for studying the effective connectivity of neuronal circuits. The stimulation excites neurons, and the resulting TMS-evoked potentials (TEPs) are recorded with EEG. A serious obstacle in this method is the generation of large muscle artifacts from scalp muscles, especially when frontolateral and temporoparietal, such as speech, areas are stimulated. Here, TMS-EEG data were processed with the signal-space projection and source-informed reconstruction (SSP-SIR) artifact-removal methods to suppress these artifacts. SSP-SIR suppressed muscle artifacts according to the difference in frequency contents of neuronal signals and muscle activity. The effectiveness of SSP-SIR in rejecting muscle artifacts and the degree of excessive attenuation of brain EEG signals were investigated by comparing the processed versions of the recorded TMS-EEG data with simulated data. The calculated individual lead-field matrix describing how the brain signals spread on the cortex were used as simulated data. We conclude that SSP-SIR was effective in suppressing artifacts also when frontolateral and temporoparietal cortical sites were stimulated, but it may have suppressed also the brain signals near the stimulation site. Effective connectivity originating from the speech-related areas may be studied even when speech areas are stimulated at least on the contralateral hemisphere where the signals were not suppressed that much.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Habla/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Algoritmos , Artefactos , Mapeo Encefálico/métodos , Procesamiento Automatizado de Datos , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Neuronas , Cuero Cabelludo
7.
Neuroreport ; 30(16): 1110-1114, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31568206

RESUMEN

The combination of transcranial magnetic stimulation and electroencephalography can be applied to probe effective connectivity. Neurons are excited by magnetic pulses, which produce transcranial magnetic stimulation-evoked potentials that can be monitored with electroencephalography. Effective connectivity refers to causal connections in the brain; it describes how different brain areas communicate with each other. Broca's area is crucial for all phases of speech processing and is located in the frontotemporal region of the cortex. Only a few studies have investigated this region using transcranial magnetic stimulation-electroencephalography because of the large cranial muscles that are located over these areas, resulting in large artifacts covering the transcranial magnetic stimulation-evoked potentials. However, it is shown that this obstacle can be overcome with new artifact-removal tools. We used minimum-norm estimation to locate the sources of the neuronal signals in electroencephalography data after stimulating the right-hemispheric homologue of Broca's area in three right-handed subjects; it was shown that the spreading of brain activity might be different for different individuals and that the brain activity spread fast to the contralateral hemisphere.


Asunto(s)
Encéfalo/fisiología , Área de Broca/fisiología , Potenciales Evocados/fisiología , Estimulación Magnética Transcraneal , Adulto , Mapeo Encefálico , Electroencefalografía/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Estimulación Magnética Transcraneal/métodos
8.
Exp Brain Res ; 237(6): 1503-1510, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30919012

RESUMEN

Chronic neuropathic pain is known to alter the primary motor cortex (M1) function. Less is known about the normal, physiological effects of experimental neurogenic pain on M1. The objective of this study is to determine how short-interval intracortical inhibition (SICI) is altered in the M1 representation area of a muscle exposed to experimental pain compared to SICI of another muscle not exposed to pain. The cortical representation areas of the right abductor pollicis brevis (APB) and biceps brachii (BB) muscles of 11 subjects were stimulated with a multi-locus transcranial magnetic stimulation device while the resulting motor-evoked potentials (MEPs) were recorded with electromyography. Single- and paired-pulse TMS was administered in seven conditions, including one with the right hand placed in cold water. The stimulation intensity for the conditioning pulses in the paired-pulse examination was 80% of the resting motor threshold (RMT) of the stimulated site and 120% of RMT for both the test and single pulses. The paired-pulse MEP amplitudes were normalized with the mean amplitude of the single-pulse MEPs of the same condition and muscle. SICI was compared between conditions. After the cold pain, the normalized paired-pulse MEP amplitudes decreased in APB, but not in BB, indicating that SICI was potentially increased only in the cortical area of the muscle subjected to pain. These data suggest that SICI is increased in the M1 representation area of a hand muscle shortly after exposure to pain has ended, which implies that short-lasting pain can alter the inhibitory balance in M1.


Asunto(s)
Dolor Agudo/fisiopatología , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Inhibición Neural/fisiología , Neuralgia/fisiopatología , Adulto , Brazo/fisiología , Electromiografía , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal
9.
Brain Connect ; 8(7): 420-428, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30152705

RESUMEN

The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) enables one to study effective connectivity and activation order in neuronal networks. To characterize effective connectivity originating from the primary motor cortex (M1), dorsal premotor area (PMd), and supplementary motor area (SMA). Three right-handed volunteers (two men, aged 25-30 years) participated in a navigated TMS-EEG experiment. M1, PMd, and SMA over the nondominant hemisphere were stimulated with 150 TMS pulses. Minimum-norm estimates were derived from the EEG data to estimate the spatial spreading of TMS-elicited neuronal activation on an individual level. The activation order of the cortical areas varied depending on the stimulated area. There were similarities and differences in the spatial distribution of the TMS-evoked potentials between subjects. Similarities in cortical activation patterns were seen at short poststimulus latencies and the differences at long latencies. This pilot study suggests that cortical activation patterns and the activation order of motor areas differ interindividually and depend on the stimulated motor area. It further indicates that TMS-activated effective connections or underlying structural connections vary between subjects. The spatial patterns of TMS-evoked potentials differ between subjects especially at long latencies, when probably more complex neuronal networks are active.

10.
Acta Neurochir (Wien) ; 159(7): 1187-1195, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28456870

RESUMEN

INTRODUCTION: Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value. METHODS: The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications. RESULTS: nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here. CONCLUSION: At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.


Asunto(s)
Mapeo Encefálico/métodos , Lenguaje , Corteza Motora/fisiología , Neuronavegación/métodos , Estimulación Magnética Transcraneal/métodos , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/cirugía
11.
Clin Neurophysiol ; 127(8): 2775-2784, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27417053

RESUMEN

OBJECTIVE: To assess the inter-hemispheric differences in neuronal function and structure of the motor cortex in a small group of chronic stroke patients having suffered a restricted ischemic lesion affecting hand motor representation. GABAergic intracortical inhibition, known to be affected by stroke lesion, was also investigated. METHODS: Eight patients exhibiting little or no motor impairment were studied using transcranial magnetic stimulation (TMS) and diffusion weighted imaging (DWI) >15months from diagnosis. Resting motor threshold (MT) for 50µV and 2mV motor evoked potentials, and short-interval intracortical inhibition (SICI) were measured from hand muscles. Apparent diffusion coefficients (ADCs) were analyzed from the DWI for the primary motor cortex (M1), the supplementary motor area (SMA) and thalamus for reflecting changes in neuronal organization. RESULTS: The MTs did not differ between the affected (AH) and unaffected hemisphere (UH) in 50µV responses, while the MTs for 2mV responses were higher (p=0.018) in AH. SICI was weakened in AH (p=0.008). ADCs were higher in the affected M1 compared to the unaffected M1 (p=0.018) while there were no inter-hemispheric differences in SMA or thalamus. CONCLUSIONS: Inter-hemispheric asymmetry and neuronal organization demonstrated abnormalities in the M1. However, no confident inference can be made whether the observed alterations in neurophysiological and imaging measures have causal role for motor rehabilitation in these patients. SIGNIFICANCE: Neurophysiological changes persist and are detectable using TMS years after stroke even though clinical symptoms have normalized.


Asunto(s)
Infarto Encefálico/fisiopatología , Potenciales Evocados Motores/fisiología , Lateralidad Funcional/fisiología , Corteza Motora/fisiopatología , Accidente Cerebrovascular/fisiopatología , Anciano , Infarto Encefálico/diagnóstico por imagen , Infarto Encefálico/patología , Imagen de Difusión por Resonancia Magnética , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Corteza Motora/patología , Músculo Esquelético/fisiopatología , Inhibición Neural/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Tálamo/diagnóstico por imagen , Tálamo/patología , Tálamo/fisiopatología , Estimulación Magnética Transcraneal
12.
Brain Plast ; 1(2): 223-234, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29765844

RESUMEN

Background: The muscle representations in non-primary motor area (NPMA) are located in the dorsal premotor area (PMd) and in the border region between the premotor area and the supplementary motor area (SMA). Objective: We characterized the plasticity of intracortical inhibitory and excitatory circuits in muscle representations in primary motor cortex (M1) and in NPMA related to acquired fine motor skills. We compared local cortical inhibition and facilitation balance in M1 and in NPMA between control subjects (n = 6) and right-handed string-instrument players (n = 5). Methods: Navigated transcranial magnetic stimulation (TMS) was used to compare motor thresholds (MTs), motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in non-dominant hand muscle representations in M1 and NPMA. Results: String-instrument players showed reduced SICI in M1 in the actively used left hand abductor digiti minimi (ADM) muscle representation at 3 ms inter-stimulus interval (ISI) with a conditioning stimulus (CS) intensity of 80% of MT and increased SICI in NPMA in ADM representation at 2 ms ISI and CS intensity of 50% of MT in comparison with controls. No differences between string-instrument players and controls were found for the SICI in the left hand opponens pollicis (OP) muscle representation, which is a muscle not intensively trained in string-instrument players. Conclusions: These preliminary results indicate that the stronger inhibition in motor representations outside M1 in string-instrument players may be crucial when accurate movements of single muscles must be performed. In contrast, weaker inhibition in M1 in string-instrument players may benefit the performance of fast finger movements.

13.
Hum Brain Mapp ; 35(8): 4105-17, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24522997

RESUMEN

Cerebral palsy (CP) is characterized by difficulty in control of movement and posture due to brain damage during early development. In addition, tactile discrimination deficits are prevalent in CP. To study the function of somatosensory and motor systems in CP, we compared the reactivity of sensorimotor cortical oscillations to median nerve stimulation in 12 hemiplegic CP children vs. 12 typically developing children using magnetoencephalography. We also determined the primary cortical somatosensory and motor representation areas of the affected hand in the CP children using somatosensory-evoked magnetic fields and navigated transcranial magnetic stimulation, respectively. We hypothesized that the reactivity of the sensorimotor oscillations in alpha (10 Hz) and beta (20 Hz) bands would be altered in CP and that the beta-band reactivity would depend on the individual pattern of motor representation. Accordingly, in children with CP, suppression and rebound of both oscillations after stimulation of the contralateral hand were smaller in the lesioned than intact hemisphere. Furthermore, in two of the three children with CP having ipsilateral motor representation, the beta- but not alpha-band modulations were absent in both hemispheres after affected hand stimulation suggesting abnormal sensorimotor network interactions in these individuals. The results are consistent with widespread alterations in information processing in the sensorimotor system and complement current understanding of sensorimotor network development after early brain insults. Precise knowledge of the functional sensorimotor network organization may be useful in tailoring individual rehabilitation for people with CP.


Asunto(s)
Ritmo alfa , Ritmo beta , Parálisis Cerebral/fisiopatología , Mano/fisiopatología , Corteza Sensoriomotora/fisiopatología , Adolescente , Parálisis Cerebral/patología , Niño , Potenciales Evocados Somatosensoriales , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Nervio Mediano/fisiopatología , Actividad Motora/fisiología , Periodicidad , Estimulación Física , Corteza Sensoriomotora/patología , Percepción del Tacto/fisiología , Estimulación Magnética Transcraneal
14.
Neuroreport ; 24(11): 596-600, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23719022

RESUMEN

Our aim was to study long-term plasticity in the organization of cortical muscle representations due to extensive motor training for different skills. We were especially interested in whether skill-specific demands on independent hand muscle movements and synchronous leg muscle movements are reflected differently in the reorganization of muscle representations. We used navigated transcranial magnetic stimulation to estimate the size of cortical representations of opponens pollicis, abductor digiti minimi, and tibialis anterior muscles in five string instrument players, five figure skaters, and five controls. The extent of the representation area was presented as an amplitude-area curve showing the spatial distribution of motor evoked potentials. The size of representation areas was compared between the dominant and nondominant hemispheres and between the groups. The representation area of the left abductor digiti minimi (critical for reaching right tones) in the right, nondominant hemisphere was smaller in string players and the representation area of the tibialis anterior in the dominant hemisphere (critical for jumps) was larger in figure skaters when compared with controls. Reorganization in the motor cortex may differ depending upon the skill and an individual muscle's role in the skill. A smaller representation area of the independently used hand muscle in masters of fine motor skills may reflect long-term plasticity toward more focused representation, which may be beneficial in accurate and discrete cortical control of the muscle. Larger cortical representations are related to skill demanding coactivation of proximal and distal lower limb muscles.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Músculo Esquelético/inervación , Plasticidad Neuronal/fisiología , Adulto , Femenino , Humanos , Masculino , Música , Patinación/fisiología , Especialización , Estimulación Magnética Transcraneal , Adulto Joven
15.
Hum Brain Mapp ; 32(10): 1692-703, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20886574

RESUMEN

Transcranial magnetic stimulation (TMS) of the superior frontal gyrus in the non-primary motor area (NPMA) can evoke motor-evoked potentials (MEPs) at 20 ms latency range in contralateral distal hand muscles similar to stimulation of M1 and indicating monosynaptic corticospinal tracts. We compared the intracortical inhibitory and excitatory balance in primary motor cortex (M1) and in NPMA by navigated single- and paired-pulse TMS (ppTMS). We also evaluated the spatial stability of muscle representations in M1 and NPMA by remapping 11 healthy subjects one year after the initial mapping. Resting motor threshold (rMT) was higher in NPMA than in M1 as were the MEP amplitudes evoked by 120% rMT stimulation intensity of the local MT. Short-interval intracortical inhibition (SICI) was significantly weaker in NPMA than in M1 at ISI of 2 ms and conditioning stimulus (CS) 80% rMT. Our findings suggest that the cortical hand representations in NPMA 1) are connected to lower motoneurons monosynaptically, 2) are less strictly organized, i.e. motoneuron population representing a discrete hand muscle is sparser and less dense than in M1 and 3) have the capacity to generate powerful, rapid muscle contraction if sufficient number of motoneurones are activated. In NPMA, local intracortical inhibitory and excitatory activity is mainly similar to that in M1. The lower SICI in NPMA at an ISI of 2 ms may reflect less strict topographic organization and readiness to reorganization of neural circuits during motor learning or after motor deficits.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados Motores/fisiología , Mano/inervación , Músculo Esquelético/fisiología , Inhibición Neural/fisiología , Tractos Piramidales/fisiología , Adulto , Biofisica , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Electromiografía , Femenino , Humanos , Masculino , Estadísticas no Paramétricas , Factores de Tiempo , Estimulación Magnética Transcraneal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...