Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39026894

RESUMEN

Modifiers of Huntington's disease (HD) include mismatch repair (MMR) genes; however, their underlying disease-altering mechanisms remain unresolved. Knockout (KO) alleles for 9 HD GWAS modifiers/MMR genes were crossed to the Q140 Huntingtin (mHtt) knock-in mice to probe such mechanisms. Four KO mice strongly ( Msh3 and Pms1 ) or moderately ( Msh2 and Mlh1 ) rescue a triad of adult-onset, striatal medium-spiny-neuron (MSN)-selective phenotypes: somatic Htt DNA CAG-repeat expansion, transcriptionopathy, and mHtt protein aggregation. Comparatively, Q140 cortex also exhibits an analogous, but later-onset, pathogenic triad that is Msh3 -dependent. Remarkably, Q140/homozygous Msh3-KO lacks visible mHtt aggregates in the brain, even at advanced ages (20-months). Moreover, Msh3 -deficiency prevents striatal synaptic marker loss, astrogliosis, and locomotor impairment in HD mice. Purified Q140 MSN nuclei exhibit highly linear age-dependent mHtt DNA repeat expansion (i.e. repeat migration), with modal-CAG increasing at +8.8 repeats/month (R 2 =0.98). This linear rate is reduced to 2.3 and 0.3 repeats/month in Q140 with Msh3 heterozygous and homozygous alleles, respectively. Our study defines somatic Htt CAG-repeat thresholds below which there are no detectable mHtt nuclear or neuropil aggregates. Mild transcriptionopathy can still occur in Q140 mice with stabilized Htt 140-CAG repeats, but the majority of transcriptomic changes are due to somatic repeat expansion. Our analysis reveals 479 genes with expression levels highly correlated with modal-CAG length in MSNs. Thus, our study mechanistically connects HD GWAS genes to selective neuronal vulnerability in HD, in which Msh3 and Pms1 set the linear rate of neuronal mHtt CAG-repeat migration to drive repeat-length dependent pathogenesis; and provides a preclinical platform for targeting these genes for HD suppression across brain regions. One Sentence Summary: Msh3 and Pms1 are genetic drivers of sequential striatal and cortical pathogenesis in Q140 mice by mediating selective CAG-repeat migration in HD vulnerable neurons.

2.
bioRxiv ; 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577582

RESUMEN

Background: Genetic study of late-onset Alzheimer's disease (AD) reveals that a rare Arginine-to-Histamine mutation at amino acid residue 47 (R47H) in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) results in increased disease risk. TREM2 plays critical roles in regulating microglial response to amyloid plaques in AD, leading to their clustering and activation surrounding the plaques. We previously showed that increasing human TREM2 gene dosage exerts neuroprotective effects against AD-related deficits in amyloid depositing mouse models of AD. However, the in vivo effects of the R47H mutation on human TREM2-mediated microglial reprogramming and neuroprotection remains poorly understood. Method: Here we created a BAC transgenic mouse model expressing human TREM2 with the R47H mutation in its cognate genomic context (BAC-TREM2-R47H). Importantly, the BAC used in this study was engineered to delete critical exons of other TREM-like genes on the BAC to prevent confounding effects of overexpressing multiple TREM-like genes. We crossed BAC-TREM2- R47H mice with 5xFAD [1], an amyloid depositing mouse model of AD, to evaluate amyloid pathologies and microglial phenotypes, transcriptomics and in situ expression of key TREM2 -dosage dependent genes. We also compared the key findings in 5xFAD/BAC-TREM2-R47H to those observed in 5xFAD/BAC-TREM2 mice. Result: Both BAC-TREM2 and BAC-TREM2-R47H showed proper expression of three splicing isoforms of TREM2 that are normally found in human. In 5xFAD background, elevated TREM2-R47H gene dosages significantly reduced the plaque burden, especially the filamentous type. The results were consistent with enhanced phagocytosis and altered NLRP3 inflammasome activation in BAC- TREM2-R47H microglia in vitro. However, unlike TREM2 overexpression, elevated TREM2- R47H in 5xFAD failed to ameliorate cognitive and transcriptomic deficits. In situ analysis of key TREM2 -dosage dependent genes and microglial morphology uncovered that TREM2-R47H showed a loss-of-function phenotype in reprogramming of plaque-associated microglial reactivity and gene expression in 5xFAD. Conclusion: Our study demonstrated that the AD-risk variant has a previously unknown, mixture of partial and full loss of TREM2 functions in modulating microglial response in AD mouse brains. Together, our new BAC-TREM2-R47H model and prior BAC-TREM2 mice are invaluable resource to facilitate the therapeutic discovery that target human TREM2 and its R47H variant to ameliorate AD and other neurodegenerative disorders.

3.
Neuron ; 110(20): 3318-3338.e9, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36265442

RESUMEN

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.


Asunto(s)
Enfermedad de Huntington , Transcriptoma , Animales , Ratones , Proteína Quinasa C-theta/genética , Redes Reguladoras de Genes , Enfermedad de Huntington/genética , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA