Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Res Sq ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562878

RESUMEN

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

3.
Nat Commun ; 14(1): 6777, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880212

RESUMEN

Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Femenino , Humanos , Aminoácidos/metabolismo , Aminoácidos Esenciales , Neoplasias de la Mama/patología , Glicina , Transportador de Aminoácidos Neutros Grandes 1/genética , Serina , Proteína p53 Supresora de Tumor/genética
4.
Cancers (Basel) ; 15(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37686487

RESUMEN

BACKGROUND: Advancements in DNA sequencing technology have facilitated the assessment of the connection between the oral microbiome and various diseases. The aim of the present study was to investigate the salivary microbiota composition employing for the first time in the literature the Oxford Nanopore Technology in patients affected by oral squamous cell carcinoma (OSCC). METHODS: Unstimulated saliva samples of 31 patients were collected (24 OSCC patients and 7 controls). DNA was extracted using the QIAamp DNA Blood Kit and metagenomic long sequencing reads were performed using the MinION device. RESULTS: In the OSCC group, 13 were males and 11 were females, with a mean age of 65.5 ± 13.9 years; in the control group, 5 were males and 2 were females, with a mean age of 51.4 ± 19.2 years. The border of the tongue was the most affected OSCC site. The microorganisms predominantly detected in OSCC patients were Prevotella, Chlamydia, Tissierellia, Calothrix, Leotiomycetes, Firmicutes and Zetaproteobacteria. CONCLUSIONS: This study confirmed the predominance of periodontopathic bacteria in the salivary microbiome in the OSCC group. If a direct correlation between oral dysbiosis and OSCC onset was proven, it could lead to new prevention strategies and early diagnostic tools.

5.
Front Immunol ; 13: 1037191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439146

RESUMEN

C1q, the recognition molecule of the classical pathway of the complement system, plays a central role in pregnancy. Lack of C1q is characterized by poor trophoblast invasion and pregnancy failure. C1q can be the target of an antibody response: anti-C1q autoantibodies (anti-C1q) are present in several infectious and autoimmune diseases. The presence of these autoantibodies has been detected also in 2-8% of the general population. Recent evidence indicates that women who undergo assisted reproductive technology (ART) have an increased risk of developing pre-eclampsia (PE), particularly oocyte donation (OD) pregnancies. The aim of this study was to characterize the levels of C1q and anti-C1q in PE gestations, in healthy spontaneous, homologous and heterologous ART pregnancies. Serum of the following four groups of women, who were followed throughout two or three trimesters, were collected: PE, patients diagnosed with PE; OD, oocyte donation recipients; HOM, homologous ART women; Sp, spontaneous physiological pregnancy. Our results indicate that PE patients have lower levels of anti-C1q. In ART pregnant women, the trend of C1q and anti-C1q levels were similar to PE patients, even though these women did not develop PE-like symptoms during pregnancy. This finding suggests an immunological dysfunction at the foetal-maternal interface in ART pregnancies, a hypothesis confirmed by the observation of C1q deposition in placentae derived from OD, comparable to PE. Since significantly lower levels of anti-C1q were detected in PE compared to healthy control sera, we hypothesize the possible binding on placental syncytiotrophoblast microvesicles (STBM), which are increased in the circulation of PE mothers. Furthermore, the characterization of the binding-epitope of anti-C1q revealed that "physiological" autoantibodies were mainly directed against C1q globular domain. We concluded that anti-C1q could have a physiological role in pregnancy: during the healthy spontaneous pregnancy the raised levels of these autoantibodies can be important for the clearance of STBM. In PE and in pathological pregnancies (but also in OD pregnancies), the increase in syncytiotrophoblast apoptosis and consequent increase of the circulating STMB levels lead to a consumption of C1q and anti-C1q.


Asunto(s)
Preeclampsia , Femenino , Humanos , Embarazo , Autoanticuerpos , Complemento C1q , Estudios Longitudinales , Placenta/metabolismo
6.
Cancers (Basel) ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36358859

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide. Despite recent advances in diagnosis and treatment, in recent years, an increase in the incidence of OSCC has been registered, and the mortality rate is still high. This systematic review aims to identify a potential association between the composition of salivary microbiota and OSCC. MATERIALS AND METHODS: The protocol for this study was designed following the PRISMA guidelines. Records were identified using different search engines (e.g., Medline/PubMed). Observational studies, in human subjects with histological diagnosis of OSCC, concerning the analysis of salivary microbiota, were selected. RESULTS: Eleven papers were included. The salivary microbiomes of 1335 patients were analysed (n.687 OSCC and n.648 controls). Due to the great heterogeneity of the studies, it was not possible to profile a specific microbiota associated with OSCC. However, periodontal pathogens were the most common bacteria detected in patients with OSCC (i.e., Fusobacterium, Prevotella). CONCLUSIONS: Although there are evident alterations in the salivary microbiota composition in OSCC patients, it is still a challenge to identify a specific microbiota pattern in OSCC patients. If the associations between specific salivary microorganisms and OSCC are confirmed, microbiome analysis could be a useful tool for the screening and follow-up of patients affected by OSCC.

7.
Biomedicines ; 10(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36289717

RESUMEN

Glial tumors alone account for 40% of all CNS tumors and present a low survival rate. The tumor microenvironment is a critical regulator of tumor progression and therapeutic effectiveness in glioma. Growing evidence from numerous studies of human solid tumor-infiltrating CD8+ T cells indicates that tissue-resident memory T cells (TRM) represent a substantial subpopulation of tumor-infiltrating lymphocytes (TILs). Although it is reported that some types of cancer patients with high immune infiltration tend to have better outcomes than patients with low immune infiltration, it seems this does not happen in gliomas. This study aimed to characterize TRMs cells in the glioma tumor microenvironment to identify their potential predictive and prognostic role and the possible therapeutic applications. Fluorescence activated cell sorting (FACS) analysis and immunofluorescence staining highlighted a statistically significant increase in CD8+ TRM cells (CD103+ and CD69+ CD8+ T cells) in gliomas compared to control samples (meningioma). In-silico analysis of a dataset of n = 153 stage IV glioma patients confirmed our data. Moreover, the gene expression analysis showed an increase in the expression of TRM-related genes in tumor tissues compared to normal tissues. This analysis also highlighted the positive correlation between genes associated with CD8+ TRM and TILs, indicating that CD8+ TRMs cells are present among the infiltrating T cells. Finally, high expression of Integrin subunit alpha E (ITGAE), the gene coding for the integrin CD103, and high CD8+ TILs abundance were associated with more prolonged survival, whereas high ITGAE expression but low CD8+ TILs abundance were associated with lower survival.

8.
Life (Basel) ; 12(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35054462

RESUMEN

In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.

9.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944796

RESUMEN

Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.

10.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576040

RESUMEN

Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.


Asunto(s)
COVID-19/complicaciones , Epigénesis Genética/inmunología , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Cardiomiopatía de Takotsubo/genética , Biomarcadores/análisis , COVID-19/inmunología , COVID-19/virología , Variaciones en el Número de Copia de ADN/inmunología , Sitios Genéticos/inmunología , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/patología , Humanos , Anamnesis , Polimorfismo de Nucleótido Simple/inmunología , SARS-CoV-2/inmunología , Cardiomiopatía de Takotsubo/diagnóstico , Cardiomiopatía de Takotsubo/inmunología , Cardiomiopatía de Takotsubo/patología
11.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204843

RESUMEN

Due to the high expression of P-selectin glycoprotein ligand-1 (PSGL-1) in lymphoproliferative disorders and in multiple myeloma, it has been considered as a potential target for humoral immunotherapy, as well as an immune checkpoint inhibitor in T-cells. By investigating the expression of SELPLG in 678 T- and B-cell samples by gene expression profiling (GEP), further supported by tissue microarray and immunohistochemical analysis, we identified anaplastic large T-cell lymphoma (ALCL) as constitutively expressing SELPLG at high levels. Moreover, GEP analysis in CD30+ ALCLs highlighted a positive correlation of SELPLG with TNFRSF8 (CD30-coding gene) and T-cell receptor (TCR)-signaling genes (LCK, LAT, SYK and JUN), suggesting that the common dysregulation of TCR expression in ALCLs may be bypassed by the involvement of PSGL-1 in T-cell activation and survival. Finally, we evaluated the effects elicited by in vitro treatment with two anti-PSGL-1 antibodies (KPL-1 and TB5) on the activation of the complement system and induction of apoptosis in human ALCL cell lines. In conclusion, our data demonstrated that PSGL-1 is specifically enriched in ALCLs, altering cell motility and viability due to its involvement in CD30 and TCR signaling, and it might be considered as a promising candidate for novel immunotherapeutic approaches in ALCLs.

12.
EBioMedicine ; 61: 103055, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33096480

RESUMEN

BACKGROUND: Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. METHODS: Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. FINDINGS: We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. INTERPRETATION: Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. FUNDING: This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.


Asunto(s)
Biomarcadores de Tumor , Heterogeneidad Genética , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Células del Estroma/metabolismo , Microambiente Tumoral/genética , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunofenotipificación , Hibridación in Situ , Ratones , Modelos Biológicos , Fenotipo , Pronóstico , Análisis de Secuencia de ARN , Células del Estroma/patología , Transcriptoma
13.
Mol Biol Rep ; 45(1): 1-7, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29238890

RESUMEN

The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.


Asunto(s)
ADN de Neoplasias/genética , Leucemia de Células Pilosas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/análisis , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucemia de Células Pilosas/enzimología , Técnicas de Diagnóstico Molecular/métodos , Mutación , Nanoporos , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...