Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf A Physicochem Eng Asp ; 402: 146-151, 2012 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-22822292

RESUMEN

This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer assembly on glass slides by alternating exposures to monodisperse Au(25) nanoparticles and ionic polymer linkers. Thermal evaporation of organic matters from the nanoparticle-polymer multilayer films at 600 °C allowed the nanoparticles to coalescence and form nanostructured films. Characterization of the nanostructured films generated from Au(25) nanoparticles using atomic force microscopy (AFM) showed that the films have rounded, small, island-like morphologies (d: 30-50 nm) with a pit in the center of many islands. However, further characterizations with s-SNOM revealed that the produced nanoislands contain a single gold cluster in a pit surrounded by donut-shaped dielectric species. Formation of such a structure is thought to be resulted from the embedding of gold clusters under the reorganized polysiloxane binder coatings and glass surfaces during heat treatment of the Au(25) nanoparticle multilayer films. The nanostructured films displayed strong surface plasmon resonance bands in UV-vis spectra with a peak absorbance occurring at ~545-550 nm. The optical sensing capability of the films was examined using D-glucose-functionalized gold island films with the interaction of Concanavalin A (ConA). The result showed that the adsorption of ConA on island films causes a large change in the LSPR band intensity.

2.
J Phys Chem C Nanomater Interfaces ; 115(21): 10597-10605, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21625329

RESUMEN

This article reports the effects of heating temperature and composition of nanoparticle multilayer films on the morphology, stability, and optical property of gold nanoisland films prepared by nanoparticle self-assembly/heating method. First, nanoparticle-polymer multilayer films are prepared by the layer-by-layer assembly. Nanoparticle multilayer films are then heated at temperature ranging from 500 °C to 625 °C in air to induce an evaporation of organic matters from the films. During the heating process, the nanoparticles on the solid surface undergo coalescence, resulting in the formation of nanostructured gold island arrays. Characterization of nanoisland films using atomic force microscopy and UV-vis spectroscopy suggests that the morphology and stability of gold island films change when different heating temperatures are applied. Stable gold nanoisland thin film arrays can only be obtained after heat treatments at or above 575 °C. In addition, the results show that the use of nanoparticles with different sizes produces nanoisland films with different morphologies. Multilayer films containing smaller gold nanoparticles tend to produce more monodisperse and smaller island nanostructures. Other variables such as capping ligands around nanoparticles and molecular weight of polymer linkers are found to have only minimal effects on the structure of island films. The adsorption of streptavidin on the biotin-functionalized nanoisland films is studied for examining the biosensing capability of nanoisland arrays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...