Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 10: 102133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970031

RESUMEN

The methodology described here presents the procedures for determining physical soil properties of undisturbed soil samples. Besides describing the methods for determining bulk and particle density, moisture content and porosity of the soil in detail, it also offers a way of determining soil's water holding properties when there is no pressure membrane apparatus available. This method is based on a capillary water saturation experiment and gravimetric measurements performed in different time intervals after the saturation (30 minutes, 2 hours, and 24 hours). With a few, simple to follow steps, and not using complicated and space-consuming equipment, it can be replicated in almost any laboratory, and the results are easily interpreted. The method was, and still is, widely used in the Czech Republic, and some parts of it are used as standard soil testing methods. To a lesser or greater detail, this method is described in Rejsek (1999), Valla et al. (2011), Pospísilová et al. (2016) and ÚKZÚZ (2016), and this methodology is compiled from those publications, mainly focusing (and using the same abbreviations) on the procedures described by Valla et al. (2011). The methodology described does not essentially differ from the original, but the steps here have been described to a greater detail, based on the practical experiences obtained over the years, in order to make some common mistakes less likely to happen. The methodology is further complemented with graphical illustrations for each step described in the process, making it clearer, more easily understood, and easier to replicate. Since this methodology has not been available in English so far, this guide offers a great opportunity of its replication on an international level.•Simple, cost-effective and environmentally friendly method for determining physical soil properties•Easy replication and results interpretation•Results can be obtained even in non-highly specialized soil laboratories.

2.
J Inorg Biochem ; 101(9): 1224-33, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17659346

RESUMEN

Clear-cut areas formed after forest decline due to acid deposition, pest attacks, or wind-breaks in temperate mountainous regions are often populated by grass (mainly Calamagrostis villosa). This study focused on the changes of soil chemical characteristics under the grass cover replacing the forest, focusing mainly on aluminium (Al) speciation. Clear-cut area due to strong acid deposition in the Jizera Mountains (Northern Bohemia) was studied. The soils under grass cover exhibit higher pH values and lower exchangeable Al content compared to adjacent surviving forest. Mobile Al species under the grass have larger proportion of non-toxic organic complexes. The content of exchangeable base cations is slightly higher under the grass. The positive effect of grass on soil chemistry was enhanced by liming. The temporary grass cover can therefore improve soil chemical quality for following reforestation. However, the differences are generally limited to surface organic horizons. Similar results were found also on a bark-beetle clear-cut area in the Bohemian Forest (Southern Bohemia) with smaller acid deposition; nevertheless, most differences were not significant there.


Asunto(s)
Poaceae , Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...