Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(23): 9741-9747, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458929

RESUMEN

We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnon─a single-ion 4-magnon bound state─that corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states.

2.
ACS Nano ; 16(8): 12656-12665, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867668

RESUMEN

Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P ≈ 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.

3.
Adv Sci (Weinh) ; 9(1): e2103813, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716672

RESUMEN

Monolayers of transition metal dichalcogenides display a strong excitonic optical response. Additionally encapsulating the monolayer with hexagonal boron nitride allows to reach the limit of a purely homogeneously broadened exciton system. On such a MoSe2 -based system, ultrafast six-wave mixing spectroscopy is performed and a novel destructive photon echo effect is found. This process manifests as a characteristic depression of the nonlinear signal dynamics when scanning the delay between the applied laser pulses. By theoretically describing the process within a local field model, an excellent agreement with the experiment is reached. An effective Bloch vector representation is developed and thereby it is demonstrated that the destructive photon echo stems from a destructive interference of successive repetitions of the heterodyning experiment.

4.
Phys Chem Chem Phys ; 22(34): 19155-19161, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812577

RESUMEN

The spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.3 × 1011 cm-2. The observed evolutions based on PL experiments on the same sample are different and can hardly be understood within the same simple frame, highlighting the complexity of relaxation processes involved in the PL response.

5.
Proc Natl Acad Sci U S A ; 117(24): 13214-13219, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482864

RESUMEN

When serving as a protection tissue and/or inducing a periodic lateral modulation for/in atomically thin crystals, hexagonal boron nitride (hBN) has revolutionized the research on van der Waals heterostructures. By itself, hBN appears as an emergent wide-bandgap material, which, importantly, can be optically bright in the far-ultraviolet range and which frequently displays midgap defect-related centers of yet-unclear origin, but, interestingly, acting as single-photon emitters. Controlling the hBN doping is of particular interest in view of the possible practical use of this material. Here, we demonstrate that enriching hBN with carbon (C) activates an optical response of this material in the form of a series of well-defined resonances in visible and near-infrared regions, which appear in the luminescence spectra measured under below-bandgap excitation. Two, qualitatively different, C-related radiative centers are identified: One follows the Franck-Condon principle that describes transitions between two defect states with emission/annihilation of optical phonons, and the other shows atomic-like resonances characteristic of intradefect transitions. With a detailed characterization of the energy structure and emission dynamics of these radiative centers, we contribute to the development of controlled doping of hBN with midgap centers.

6.
Nanoscale ; 10(33): 15571-15577, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30090905

RESUMEN

Recently, spatially indirect ("interlayer") excitons have been discovered in bulk 2H-MoTe2. They are theoretically predicted to exist in other Mo-based transition metal dichalcogenides (TMDCs) and are expected to be present in W-based TMDCs as well. We investigate interlayer excitons (XIL) in bulk 2H-MoSe2 and 2H-WSe2 using valley-resolved magneto-reflectance spectroscopy under high magnetic fields of up to 29 T combined with ab initio GW-BSE calculations. In the experiments, we observe interlayer excitons in MoSe2, while their signature is surprisingly absent in WSe2. In the calculations, we find that interlayer excitons exist in both Mo- and W-based TMDCs. However, their energetic positions and their oscillator strengths are remarkably different. In Mo-based compounds, the interlayer exciton resonance XIL is clearly separated from the intralayer exciton X1sA and has a high amplitude. In contrast, in W-based compounds, XIL is close in energy to the intralayer A exciton X1sA and possesses a small oscillator strength, which explains its absence in the experimental data of WSe2. Our combined experimental and theoretical observations demonstrate that interlayer excitons can gain substantial oscillator strength by mixing with intralayer states and hence pave the way for exploring interlayer exciton physics in Mo-based bulk transition metal dichalcogenides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...