Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25516, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333798

RESUMEN

Atomic migration of silicon through grain boundaries of a thin polycrystalline Cu film and island formation on the Cu surface were studied in the temperature range of 403-520 K. Samples used in these experiments was prepared on Si(111) wafers by room temperature magnetron sputtering and they consisted of amorphous Si layer (80 nm) and polycrystalline Cu layer (40 nm). The silicon layer served as the source layer of diffusion, while the copper surface was the accumulation surface. Detection of Si atoms on the accumulation surface after penetration through the Cu layer was made by low energy ion scattering spectroscopy and the grain boundary diffusion coefficient DGB was determined from the appearance time. The depth distribution of Si in the Cu film was analysed by secondary neutral mass spectroscopy. From this depth distribution, DGB was also determined. By scanning probe microscope and electron microscope measurements, it was experimentally detected that Si atoms on the Cu surface did not form a continuous layer. Instead, amorphous Si islands were formed at the accumulation surface with surface protrusions in their centres.

2.
Materials (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36614641

RESUMEN

We describe the magnetic properties of thin iron films deposited on the nanoporous titanium oxide templates and analyze their dependance on nanopore radius. We then compare the results to a continuous iron film of the same thickness. Additionally, we investigate the evolution of the magnetic properties of these films after annealing. We demonstrate that the M(H) loops consist of two magnetic phases originating from the iron layer and iron oxides formed at the titanium oxide/iron interface. We perform deconvolution of hysteresis loops to extract information for each magnetic phase. Finally, we investigate the magnetic interactions between the phases and verify the presence of exchange coupling between them. We observe the altering of the magnetic properties by the nanopores as a magnetic hardening of the magnetic material. The ZFC-FC (Zero-field cooled/field cooled) measurements indicate the presence of a disordered glass state below 50 K, which can be explained by the formation of iron oxide at the titanium oxide-iron interface with a short-range magnetic order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...