Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1352032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449697

RESUMEN

Background: Iron overload can lead to organ and cell injuries. Although the mechanisms of iron-induced cell damage have been extensively studied using various cells, little is known about these processes in kidney cells. Methods: In this study, we first examined the correlation between serum iron levels and kidney function. Subsequently, we investigated the molecular impact of excess iron on kidney cell lines, HEK293T and HK-2. The presence of the upregulated protein was further validated in urine. Results: The results revealed that excess iron caused significant cell death accompanied by morphological changes. Transcriptomic analysis revealed an up-regulation of the ferroptosis pathway during iron treatment. This was confirmed by up-regulation of ferroptosis markers, ferritin light chain (FTL), and prostaglandin-endoperoxide synthase 2 (PTGS2), and down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) using real-time PCR and Western blotting. In addition, excess iron treatment enhanced protein and lipid oxidation. Supportively, an inverse correlation between urinary FTL protein level and kidney function was observed. Conclusion: These findings suggest that excess iron disrupts cellular homeostasis and affects key proteins involved in kidney cell death. Our study demonstrated that high iron levels caused kidney cell damage. Additionally, urinary FTL might be a useful biomarker to detect kidney damage caused by iron toxicity. Our study also provided insights into the molecular mechanisms of iron-induced kidney injury, discussing several potential targets for future interventions.

2.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813201

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt , Simulación del Acoplamiento Molecular , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Apoptosis , Gemcitabina , Antineoplásicos/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Receptores ErbB
3.
Pathol Res Pract ; 248: 154678, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454493

RESUMEN

Polo-like kinase 1 (PLK1) is an essential mitotic checkpoint protein that plays a key role in cell cycle division. Overexpression of PLK1 has been associated with poor prognosis in various cancers. Cholangiocarcinoma (CCA) is a lethal bile duct cancer and the current treatments in inoperable patients have not been satisfactory. In order to develop novel targeted therapies, we investigated the efficacy of BI6727 (volasertib) and GSK461364A, polo-like kinase 1 (PLK1) inhibitors in KKU-100 and KKU-213A CCA cell lines. PLK1 expression was significantly up-regulated in CCA cases compared with normal tissues based on the results derived from GEPIA. Western blot results exhibited PLK1 protein expression in both CCA cell lines. Molecular dynamics simulations and free energy calculations based on MM/GBSA method revealed that BI6727-PLK1 and GSK461364A-PLK1 complexes were stable in an aqueous environment, and their complexation was mainly driven by Van der Waals interaction. BI6727 and GSK461364A clearly suppressed CCA cell proliferation and induced G2/M arrest, accompanied with upregulation of cyclin B1 and phosphorylated Histone H3 at Ser10 (pS10H3), specific markers of mitosis. Furthermore, both compounds triggered mitotic catastrophe followed by cell apoptosis via activation of PARP and Caspase 3, as well as downregulation of Mcl-1 anti-apoptotic protein in both CCA cell lines. In conclusion, pharmacologic PLK1 inhibition by BI6727 and GSK461364A blocked survival of CCA cells by several mechanisms. Our study provides evidence that BI6727 and GSK461364A could be alternative drugs and have potential implications at the clinical level for CCA therapy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Proliferación Celular , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Quinasa Tipo Polo 1
4.
Cancer Sci ; 114(8): 3230-3246, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37026527

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Ratones , Animales , Proteína HMGA1a , Colangiocarcinoma/metabolismo , Células Madre Neoplásicas/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Proliferación Celular
5.
PeerJ ; 11: e14883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883059

RESUMEN

Background: Intrahepatic cholangiocarcinoma (iCCA) is a cancer arising from intrahepatic bile duct epithelium. An iCCA incidence is increasing worldwide; however, the outcome of the disease is dismal. The linkage between chronic inflammation and iCCA progression is well established, but the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) remain unrevealed. Thus, a better understanding of GM-CSF functions in CCA may provide an alternative approach to CCA treatment. Methods: Differential GM-CSF and GM-CSFRα mRNA expressions in CCA tissues were investigated by Gene Expression Profiling Interactive Analysis (GEPIA) based on The Cancer Genome Atlas (TCGA) database. The protein expressions and localizations of GM-CSF and its cognate receptor (GM-CSFRα) in iCCA patients' tissues were demonstrated by the immunohistochemistry (IHC) techniques. The survival analyses were performed using Kaplan-Meier survival analysis with log-rank test and Cox proportional hazard regression model for multivariate analysis. The GM-CSF productions and GM-CSFRα expressions on CCA cells were assessed by ELISA and flow cytometry. The effects of GM-CSF on CCA cell proliferation and migration were evaluated after recombinant human GM-CSF treatment. The relationship between GM-CSF or GM-CSFRα level and related immune cell infiltration was analyzed using the Tumor Immune Estimation Resource (TIMER). Results: GEPIA analysis indicated GM-CSF and GM-CSFRα expressions were higher in CCA tissues than in normal counterparts, and high GM-CSFRα was related to the longer disease-free survival of the patients (p < 0.001). IHC analysis revealed that CCA cells differentially expressed GM-CSF, while GM-CSFRα was expressed on cancer-infiltrating immune cells. The patient whose CCA tissue contained high GM-CSF expressed CCA, and moderate to dense GM-CSFRα-expressing immune cell infiltration (ICI) acquired longer overall survival (OS) (p = 0.047), whereas light GM-CSFRα-expressing ICI contributed to an increased hazard ratio (HR) to 1.882 (95% CI [1.077-3.287]; p = 0.026). In non-papillary subtype, an aggressive CCA subtype, patients with light GM-CSFRα-expressing ICI had shorter median OS (181 vs. 351 days; p = 0.002) and the HR was elevated to 2.788 (95% CI [1.299-5.985]; p = 0.009). Additionally, TIMER analysis demonstrated GM-CSFRα expression was positively correlated with neutrophil, dendritic cell, and CD8+ T cell infiltrations, though it was conversely related to M2-macrophage and myeloid-derived suppressor cell infiltration. However, the direct effects of GM-CSF on CCA cell proliferation and migration were not observed in the current study. Conclusions: Light GM-CSFRα-expressing ICI was an independent poor prognostic factor for iCCA patients. Anti-cancer functions of GM-CSFRα-expressing ICI were suggested. Altogether, the benefits of acquired GM-CSFRα-expressing ICI and GM-CSF for CCA treatment are proposed herein and require elucidation.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Colangiocarcinoma/genética , Epitelio , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166694, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972768

RESUMEN

Cholangiocarcinoma (CCA), a cancer of the biliary tract, is a significant health problem in Thailand. Reprogramming of cellular metabolism and upregulation of lipogenic enzymes have been revealed in CCA, but the mechanism is unclear. The current study highlighted the importance of acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme in de novo lipogenesis, on CCA migration. ACC1 expression in human CCA tissues was determined by immunohistochemistry. The results demonstrated that increased ACC1 was related to the shorter survival of CCA patients. Herein, ACC1-deficient cell lines (ACC1-KD) were generated by the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (cas9) system and were used for the comparative study. The ACC1 levels in ACC1-KD were 80-90 % lower than in parental cells. Suppression of ACC1 significantly reduced intracellular malonyl-CoA and neutral lipid contents. Two-fold growth retardation and 60-80 % reduced CCA cell migration and invasion were observed in ACC1-KD cells. The reduced 20-40 % of intracellular ATP levels, AMPK activation, lowered NF-κB p65 nuclear translocation, and snail expression were emphasized. Migration of ACC1-KD cells was restored by supplementation with palmitic acid and malonyl-CoA. Altogether, the importance of rate-limiting enzyme in de novo fatty acid synthesis, ACC1, and AMPK-NF-κB-snail axis on CCA progression was suggested herein. These might be the novel targets for CCA drug design. (ACC1, AMPK, Cholangiocarcinoma, De novo lipogenesis, NF-κB, Palmitic acid).


Asunto(s)
Acetil-CoA Carboxilasa , Colangiocarcinoma , Humanos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Quinasas Activadas por AMP , FN-kappa B , Ácido Palmítico , Factores de Transcripción de la Familia Snail
7.
Front Oncol ; 12: 966089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439442

RESUMEN

Pyruvate carboxylase (PC) is an important anaplerotic enzyme that replenishes the tricarboxylic acid cycle (TCA) intermediates. It prevents the collapse of the TCA cycle upon its intermediates are removed during high anabolic demand. We have recently shown that overexpression of PC protein was associated with staging, metastasis and poor survival of colorectal cancer patients. Herein, we generated the PC knockout (PC KO) colon cancer cell lines, HT-29, by CRISPR-Cas9 technique, as a model to understand the role of this enzyme in colorectal cancer. The PC KO HT-29 cell lines had no detectable PC protein and did not show abnormal cellular or nuclear structures. However, PC KO HT-29 cells showed a 50-60% reduction in their growth rate and a 60-70% reduction in migration. The deficient growth phenotype of PC KO HT-29 cells was associated with apoptotic induction with no apparent cell cycle disruption following five days of growth. Down-regulation of key lipogenic enzymes, including acetyl-CoA carboxylase-1 and fatty acid synthase, was also associated with growth inhibition, suggesting that the de novo lipogenesis is impaired. Furthermore, PC KO HT-29 cells were 50% and 60% more sensitive to 5-fluorouracil and glutaminase inhibitor, CB-839, at their IC50 concentrations, respectively, following 48 h exposure. The increased cytotoxicity of CB-839 to PC KO HT-29 cells was associated with increased poly (ADP-ribose) polymerase cleavage. However, this was not observed with PC KO cells exposed to 5-fluorouracil, suggesting that PC KO HT-29 cells were prone to CB-839-induced apoptosis. Collectively, these findings indicate that ablation of PC expression in HT-29 cells disrupts the metabolic homeostasis of cells and inhibits proliferation and migration, accompanied by apoptotic induction. This study highlights the crucial role of PC in supporting the survival of HT-29 cells during exposure to chemotherapeutic drugs.

8.
Asian Pac J Cancer Prev ; 23(10): 3379-3386, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308362

RESUMEN

BACKGROUND: Berberine (BBR), a natural isoquinoline alkaloid, possesses diverse pharmacological properties and anti-cancer effects that have been demonstrated in many in vitro and in vivo studies. In this study, the inhibitory effects and molecular mechanism of low dose BBR on EMT-induced cell migration, and invasion capability of cholangiocarcinoma (CCA) cell lines were demonstrated. METHODS: The commercially available BBR chloride powder with purity ≥ 95% was used in this study. Effects of BBR on cell growth of two human CCA cell lines, KKU-213A and KKU-213B were measured using MTT assay. The progressive phenotypes-cell adhesion, migration, and invasion were evaluated using cell adhesion, wound healing, and Boyden chamber assays. Molecular docking analysis was performed to assess the possible binding mode of BBR against EGFR, Erk, STAT3 and Akt. The effects of BBR on the activations of EGF/EGFR and its downstream effectors were demonstrated using Western blotting. RESULTS: BBR inhibited growth of CCA cells in a dose dependent manner. At sub-cytotoxic dose, BBR significantly inhibited cell adhesion, migration, invasion and decreased expression of vimentin, slug, and VEGFA of both CCA cell lines. Molecular docking suggested the simultaneous inhibitory activity of BBR on EGFR, Erk, STAT3 and Akt. The Western blot analyses revealed that upon the EGF/EGFR activation, BBR considerably attenuated the activations of EGFR, Erk, STAT3 and Akt. CONCLUSION: Low dose of BBR suppresses EMT and thus aggressiveness of CCA cells, in part by its multi-kinase inhibitor property on EGFR and its downstream pathways.  BBR might be beneficial for therapy of human CCA.


Asunto(s)
Antineoplásicos , Berberina , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/patología , Berberina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Colangiocarcinoma/patología , Movimiento Celular , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Conductos Biliares Intrahepáticos/patología , Receptores ErbB/metabolismo
9.
iScience ; 25(10): 105182, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36248745

RESUMEN

Cholangiocarcinoma (CCA) is rare cancer with the highest incidence in Eastern and Southeast Asian countries. Advanced CCA patients rely on chemotherapeutic regimens that offer unsatisfied clinical outcomes. We developed a comprehensive drug response profiling to investigate potential new drugs using CCA cell lines from Thai and Japanese patients against 100 approved anti-cancer drugs. We identified two major CCA subgroups that displayed unique molecular pathways from our integrative pan-omic and ligand-induced pathway activation analyses. MEK and Src inhibitors specifically killed the CCA1 subgroup without causing cytotoxicity to the normal cholangiocyte. Next, we developed the CCA45 signature to classify CCA patients based on their transcriptomic data. Our CCA45 signature could accurately predict prognosis, especially for Asian CCA patients. Our study provides a comprehensive public resource for drug repurposing in CCA and introduces analytical strategies for prioritizing cancer therapeutic agents for other rare cancer.

10.
FASEB J ; 36(7): e22345, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635715

RESUMEN

High mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand. The knockdown of HMGN3 in CCA cells significantly impaired the oncogenic properties of colony formation, migration, and invasion. HMGN3 inhibited the expression of and blocked the intracellular polarities of epithelial regulator genes, such as the CDH1/E-cadherin and TJAP1 genes in CCA cells. A chromatin immunoprecipitation sequencing analysis revealed that HMGN3 required the transcription factor SNAI2 to bind to and repress the expression of epithelial regulator genes, at least in part, due to histone deacetylases (HDACs), the pharmacological inhibition of which reactivated these epithelial regulators in CCA, leading to impairing the cell migration capacity. Therefore, the overexpression of HMGN3 represses the transcription of and blocks the polarities of epithelial regulators in CCA cells in a manner that is dependent on the SNAI2 gene and HDACs.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Regulación de la Expresión Génica , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Eur J Pharmacol ; 922: 174899, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337815

RESUMEN

AIM: NMS-P715 is a potent inhibitor of monopolar spindle 1 (MPS1) mitotic checkpoint kinase. Overexpression of MPS1 is associated with short survival times in patients with cholangiocarcinoma (CCA). This study investigated the anti-cancer effects of NMS-P715 in human CCA cell lines. MAIN METHODS: KKU-100 and KKU-213A CCA cell lines were treated with NMS-P715 and cell viability was determined using MTT and colony formation assays. Inhibitory effects of NMS-P715 on cell cycle and apoptosis were evaluated using flow cytometry. Expression of underlying mechanism-related proteins was examined by Western blotting. Mitotic catastrophe was assessed by counting abnormal nuclei. Transwell assays were used to examine cell migration and invasion. KEY FINDINGS: Molecular docking showed that the NMS-P715/MPS1 complex was driven by an induced-fit mechanism. We provide new evidence that NMS-P715 potently inhibited cell proliferation and colony formation in both CCA cell lines. This was accompanied by induction of G2/M arrest and the consequent induction of mitotic catastrophe, a process that occurs during defective mitosis. The recent study showed that NMS-P715 activated caspase-dependent apoptosis and autophagosome formation with an increase of LC3 A/B-II protein expression in CCA cell lines. NMS-P715 also greatly impeded cell migration and invasion in CCA cell lines. The combination of NMS-P715 and gemcitabine or cisplatin showed synergistic effects on CCA cell proliferation. SIGNIFICANCE: This study revealed for the first time that NMS-P715 is a promising candidate for combating CCA owing via multiple actions and may be suitable for further development in a clinical study.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fasciola hepatica , Animales , Apoptosis , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas , Pirazoles , Quinazolinas
12.
Asian Pac J Cancer Prev ; 23(2): 715-721, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35225485

RESUMEN

OBJECTIVE: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein which contributes to proliferation, cancer progression and metastasis. Overexpression of ANXA1 is closely associated with metastasis in numerous types of cancer. Cholangiocarcinoma (CCA) is a bile-duct cancer which has high rates of metastasis. Previously, we demonstrated up-regulation of ANXA1 in a highly metastatic CCA cell line (KKU-213AL5). Here, we investigated the functions of ANXA1 in the progression of CCA cell lines and evaluated its clinical impacts in human CCA tissues.  Methods: Effects of ANXA1 on metastatic potential of CCA cell lines were evaluated using cell-proliferation, clonogenic, migration and invasion assays. The expression of ANXA1 in 44 intrahepatic human CCA tissues was investigated using immunohistochemistry (IHC). The association of ANXA1 with clinicopathological features of CCA patients was analyzed. RESULTS: Silencing of ANXA1 expression using siRNA significantly decreased cell proliferation, colony formation, cell migration and invasion in the KKU-213AL5 cell line. IHC results showed low expression of ANXA1 in normal bile ducts in the non-tumor area. In contrast, high expression of ANXA1 in human CCA tissues was associated with advanced tumor stage, tumor size and presence of lymph-node metastasis. CONCLUSION: These findings strongly imply that ANXA1 contributes to the progression of CCA. ANXA1 can serve as a potential prognostic marker for CCA. Ablation of ANXA1 action may be an alternative strategy to prevent metastasis of CCA.


Asunto(s)
Anexina A1/genética , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Metástasis de la Neoplasia/genética , Conductos Biliares/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Humanos , Inmunohistoquímica , Metástasis Linfática/genética , Invasividad Neoplásica/genética , Pronóstico
13.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948304

RESUMEN

Cholangiocarcinoma (CCA), an aggressive cancer of bile ducts, is a well-known chronic inflammation-related disease. The major impediment in CCA treatment is limited treatment options for advanced disease; hence, an alternative is urgently required. The role of CD147 on cytokine production has been observed in inflammation-related diseases, but not in CCA. Therefore, this study was focused on CD147-promoting proinflammatory cytokine production and functions. Proinflammatory cytokine profiles were compared between CD147 expressing CCA cells and CD147 knockout cells (CD147 KO). Three cytokines, namely interleukin (IL)-6, IL-8, and granulocyte-monocyte colony-stimulating factor (GM-CSF), were dramatically diminished in CD147 KO clones. The involvement of the CD147-related cytokines in CCA invasion was established. CD147-promoted IL-6, IL-8, and GM-CSF secretions were regulated by NF-κB nuclear translocation, Akt activation, and p38 phosphorylation. CD147-fostering IL-6 production was dependent on soluble CD147, CD147 homophilic interaction, and NF-κB function. The overexpression of specific genes in CCA tissues compared to normal counterparts emphasized the clinical importance of these molecules. Altogether, CD147-potentiated proinflammatory cytokine production leading to CCA cell invasion is shown for the first time in the current study. This suggests that modulation of CD147-related inflammation might be a promising choice for advanced CCA treatment.


Asunto(s)
Basigina/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Colangiocarcinoma/patología , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Inflamación/metabolismo , Inflamación/patología , Fosforilación/fisiología
14.
Anticancer Res ; 41(10): 4917-4928, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34593439

RESUMEN

BACKGROUND/AIM: The functions of interleukin 33 (IL-33) in cholangiocarcinoma (CCA) are unclear. This study aimed to evaluate the roles of IL-33 in CCA progression. MATERIALS AND METHODS: The effect of intracellular IL-33 using shIL-33 knocked down KKU-055 (IL-33KD-KKU-055) compared to parental (Pa) KKU-055 and extracellular IL-33 using recombinant human IL-33 (rhIL-33) treatment on the proliferation and invasion of CCA cells grown in 3D cultures was studied. Relevant markers were determined by western blot or ELISA. RESULTS: IL-33KD-KKU-055 cells showed increased proliferation and invasion in 3D cultures compared to Pa-KKU-055 cells, with NF-κB and IL-6 up-regulation. Treatment with 2 ng/ml rhIL-33 promoted Pa-KKU-055 cell proliferation by inducing NF-κB and IL-6 expressions. Upon GSK-3ß inactivation and increased nuclear full-length IL-33 (flIL-33), 20 ng/ml rhIL-33 had no effect on proliferation. Both 2 and 20 ng/ml rhIL-33 induced proliferation and invasion of IL-33-negative KKU-213 cells in 3D cultures, as well as NF-κB and IL-6 up-regulation. CONCLUSION: Intracellular and extracellular IL-33 have distinct roles in the mechanisms of CCA progression.


Asunto(s)
Neoplasias de los Conductos Biliares/prevención & control , Biomarcadores de Tumor/metabolismo , Colangiocarcinoma/prevención & control , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-33/farmacología , FN-kappa B/metabolismo , Apoptosis , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/genética , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , FN-kappa B/genética , Invasividad Neoplásica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
In Vitro Cell Dev Biol Anim ; 57(8): 825-834, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34549357

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive bile duct cancer. Opisthorchis viverrini (O. viverrini) infection is a significant cause of CCA in the Greater Mekong subregion. Currently, there is no standard chemotherapeutic regimen for CCA. A unique hamster carcinogenesis model of O. viverrini-associated CCA was established. Molecular targets identified from the hamster CCA-comparative model are valuable for target identification and validation. Hamster CCA was induced by the administration of O. viverrini metacercariae and N-nitrosodimethylamine. Hamster-derived cancer cells were isolated and continuously cultured for more than 6 months. Ham-2 cell line was established and characterized in vitro and in vivo. Ham-2 exhibited chromosome hyperploidy. A comparative study with previously established cell line, Ham-1, demonstrated that Ham-2 acquired slower growth, higher adhesion, higher migration, and resistance to doxorubicin and 5-fluorouracil (5-FU). In BALB/c Rag-2/Jak3 double-deficient (BRJ) mice, Ham-2 subcutaneous transplantation formed mucin-producing cancers, which morphologically resemble human tubular cholangiocarcinoma. Intravenous-injected Ham-2 established the metastatic nodules in the lungs and livers of BRJ mice. Altogether, a new hamster cholangiocarcinoma cell line, Ham-2, which acquired more aggressive phenotypes in vitro and in vivo, was established. This cell line might be a valuable tool for comparative drug target identification and validation.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Mucinas/metabolismo , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/parasitología , Carcinógenos/farmacología , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/parasitología , Cricetinae , Dimetilnitrosamina/farmacología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Opistorquiasis/complicaciones , Opisthorchis
16.
Anticancer Res ; 41(7): 3389-3400, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230134

RESUMEN

BACKGROUND/AIM: Cholangiocarcinoma (CCA), a biliary cancer, is a health problem worldwide. The major problem in CCA treatment presents limited options. To date, targeting cancer metabolism is a promising anti-cancer strategy. To elucidate the functional importance of lipid metabolism in CCA, de novo lipogenesis was inhibited using 5-(tetradecyloxy)-2-furoic acid (TOFA), an acetyl CoA carboxylase inhibitor. MATERIALS AND METHODS: Anti-proliferative effects of TOFA were determined both in vitro and in vivo. Its inhibitory effect on cell-cycle and apoptosis was investigated by flow cytometry and western blot analysis of relevant markers. RESULTS: TOFA inhibited CCA cell growth, induced cell-cycle progression accompanied by apoptosis in a dose-dependent manner. Induction of p21, and caspase-3, -8, and -9 cleavages, while down-regulation of cyclin B1 and cyclin D1 were observed in TOFA-treated cells. The therapeutic potential was demonstrated in vivo. CONCLUSION: De novo lipogensis is essential for CCA cell growth and is an alternative target for CCA treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Furanos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación hacia Abajo/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos
18.
PeerJ ; 9: e10637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505802

RESUMEN

Reversine is a selective inhibitor of mitotic kinase monopolar spindle 1 (MPS1) and has been reported as an anticancer agent in various cancers. The effects of reversine on bile duct cancer, cholangiocarcinoma (CCA), a lethal cancer in Northeastern Thailand, were investigated. This study reports that reversine inhibited cell proliferation of CCA cell lines in dose- and time-dependent manners but had less inhibitory effect on an immortalized cholangiocyte cell line. Reversine also triggered apoptotic cell death by decreasing anti-apoptotic proteins, Bcl-XL and Mcl-1, increasing Bax pro-apoptotic protein and activating caspase-3 activity. Moreover, reversine induced autophagic cell death by increasing LC3-II and Beclin 1 while decreasing p62. Reversine activated autophagy via the AKT signaling pathway. Additionally, this study demonstrated for the first time that reversine could diminish the expression of Hypoxia-Inducible Factor 1- alpha (HIF-1α) and glucose transporter 1 (GLUT1), resulting in a reduction of glucose uptake and energy production in CCA cell lines. These findings suggest that reversine could be a good candidate as an alternative or supplementary drug for CCA treatment.

19.
Biochim Biophys Acta Gen Subj ; 1865(5): 129850, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486056

RESUMEN

BACKGROUND: A splice product of the E6 oncoprotein, E6*, is found in cells infected with HPV associated with a high-risk for cervical cancer. Both E6* and E6 promote Dlg degradation, considered a contributing factor for the tumorigenic potential of high-risk HPVs. The full-length E6 utilizes a conserved PDZ binding motif (PBM) at the extreme C-terminus to promote Dlg degradation. In contrast, this PBM is absent in E6*. METHODS: We performed western blot analysis, site-directed mutagenesis and co-immunoprecipitation to identify the key elements required for Dlg degradation activity of high-risk HPVE6*, using HPV16E6* as a model. RESULTS: Our data indicate that only one of the two internal putative class III PBMs, located between amino acids 24-27 (HDII) of HPV16E6*, was required to facilitate degradation of Dlg protein. Substitution of the two consensus residues in this region (D25 and I27) to glycine greatly diminished activity. Whereas substitution of the two conserved residues in the putative internal class I PBM (amino acids 16-19) or the second putative class III PBM (amino acids 28-31) was without effect. Interestingly, HPV66E6* which does not promote Dlg degradation can be converted into a form capable of facilitating Dlg degradation through the insertion of nine amino acids (20-28) containing the class III PBM from HPV16E6*. HPV16E6*-induced Dlg degradation appeared independent of E6AP. CONCLUSIONS: The internal class III PBM of HPV16E6*I required for Dlg degradation is identified. GENERAL SIGNIFICANCE: This study highlights that a novel class III PBM as the domain responsible for Dlg degradation activity in high-risk HPVE6*.


Asunto(s)
Homólogo 1 de la Proteína Discs Large/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Homólogo 1 de la Proteína Discs Large/análisis , Células HEK293 , Humanos , Proteínas Oncogénicas Virales/análisis , Dominios PDZ , Unión Proteica , Proteolisis , Proteínas Represoras/análisis
20.
Biomedicines ; 9(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450849

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. The major problems of this cancer are late diagnosis and a high rate of metastasis. CCA patients in advanced stages have poor survival and cannot be cured with surgery. Therefore, targeting molecules involved in the metastatic process may be an effective CCA treatment. Monopolar spindle 1 (MPS1) is a kinase protein that controls the spindle assemble checkpoint in mitosis. It is overexpressed in proliferating cells and various cancers. The functional roles of MPS1 in CCA progression have not been investigated. The aims of this study were to examine the roles and molecular mechanisms of MPS1 in CCA progression. Immunohistochemistry results showed that MPS1 was up-regulated in carcinogenesis of CCA in a hamster model, and positive expression of MPS1 in human CCA tissues was correlated to short survival of CCA patients (n = 185). Small interfering RNA (siRNA)-induced knockdown of MPS1 expression reduced cell proliferation via G2/M arrest, colony formation, migration, and invasion. Moreover, MPS1 controlled epithelial to mesenchymal transition (EMT)-mediated migration via AKT and STAT3 signaling transductions. MPS1 was also involved in MMPs-dependent invasion of CCA cell lines. The current research highlights for the first time that MPS1 has an essential role in promoting the progression of CCA via AKT and STAT3 signaling pathways and could be an attractive target for metastatic CCA treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...