Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(6): 2883-2893, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259225

RESUMEN

The solid-state field-effect transistor, FET, and its theories were paramount in the discovery and studies of graphene. In the past two decades another transistor based on conducting polymers, called organic electrochemical transistor (ECT), has been developed and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping; while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in organic ECTs enables bulk electrochemical doping. As a result, organic ECTs maximize conductance modulation at the expense of speed. To date ECTs have been based on conducting polymers, but here we show that MXenes, a class of 2D materials beyond graphene, enable the realization of electrochemical transistors (ECTs). We show that the formulas for organic ECTs can be applied to these 2D ECTs and used to extract parameters like mobility. These MXene ECTs have high transconductance values but low on-off ratios. We further show that conductance switching data measured using ECT, in combination with other in situ-ex situ electrochemical measurements, is a powerful tool for correlating the change in conductance to that of the redox state, to our knowledge, this is the first report of this important correlation for MXene films. 2D ECTs can draw great inspiration and theoretical tools from the field of organic ECTs and have the potential to considerably extend the capabilities of transistors beyond those of conducting polymer ECTs, with added properties such as extreme heat resistance, tolerance for solvents, and higher conductivity for both electrons and ions than conducting polymers.

2.
ACS Appl Mater Interfaces ; 16(5): 6569-6578, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261552

RESUMEN

In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine Ti3C2Tx electrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry. The optimized electrode made of stacked large Ti3C2Tx flakes demonstrated excellent reproducibility and resistance to bending conditions, suggesting their use for reliable, robust, and flexible sensors. Reducing electrode thickness resulted in an amplified faradaic-to-capacitance signal, which is advantageous for this application. This led to the deposition of transparent thin Ti3C2Tx films, which maintained their best performance up to 73% transparency. These findings underscore its promise for high-performance, tailored sensors, marking a significant stride in advancing MXene utilization in next-generation electrochemical sensing technologies. The results encourage the analytical electrochemistry field to take advantage of the unique properties that pristine Ti3C2Tx electrodes can provide in sensing through more parametric studies.

3.
Adv Mater ; 35(45): e2301163, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491007

RESUMEN

A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.

4.
Small ; 18(11): e2105857, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35297185

RESUMEN

Reversible electrochemical intercalation of cations into the interlayer space of 2D materials induces tunable physical and chemical properties in them. In MXenes, a large class of recently developed 2D carbides and nitrides, low intercalation energy, high storage capacitance, and reversible intercalation of various cations have led to their improved performance in sensing and energy storage applications. Herein, a coupled nanopore-actuator system where an ultrathin free-standing MXene film serves as a nanopore support membrane and ionically active actuator is reported. In this system, the contactless MXene membrane in the electric field affects the cation movement in the field through their (de)intercalation between individual MXene flakes. This results in reversible swelling and contraction of the membrane monitored by ionic conductance through the nanopore. This unique nanopore coupled to a mechanical actuation system could provide new insights into designing single-molecule biosensing platforms at the nanoscale.


Asunto(s)
Nanoporos , Cationes , Capacidad Eléctrica , Electricidad
5.
Science ; 372(6547)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112665

RESUMEN

A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.

6.
ACS Nano ; 15(1): 625-636, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33405898

RESUMEN

Bottom-up assembly of two-dimensional (2D) materials into macroscale morphologies with emergent properties requires control of the material surroundings, so that energetically favorable conditions direct the assembly process. MXenes, a class of recently developed 2D materials, have found new applications in areas such as electrochemical energy storage, nanoscale electronics, sensors, and biosensors. In this paper, we present a lateral self-assembly method for wafer-scale deposition of a mosaic-type 2D MXene flake monolayer that spontaneously orders at the interface between two immiscible solvents. ReaxFF molecular dynamics simulations elucidate the interactions of a MXene flake with the solvents and its stability at the liquid/liquid interface, the prerequisite for MXene flakes self-assembly at the interface. Moreover, facile transfer of this monolayer onto a flat substrate (Si, glass) results in high-coverage monolayer films with uniform thickness and homogeneous optical properties. Multiscale characterization of the resulting films reveals the mosaic structure and sheds light on the electronic properties of the films, which exhibit good electrical conductivity over cm-scale areas.

7.
Small ; 17(6): e2006434, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373094

RESUMEN

Gaining control over the nanoscale assembly of different electrode components in energy storage systems can open the door for design and fabrication of new electrode and device architectures that are not currently feasible. This work presents aqueous layer-by-layer (LbL) self-assembly as a route towards design and fabrication of advanced lithium-ion batteries (LIBs) with unprecedented control over the structure of the electrode at the nanoscale, and with possibilities for various new designs of batteries beyond the conventional planar systems. LbL self-assembly is a greener fabrication route utilizing aqueous dispersions that allow various Li+ intercalating materials assembled in complex 3D porous substrates. The spatial precision of positioning of the electrode components, including ion intercalating phase and electron-conducting phase, is down to nanometer resolution. This capable approach makes a lithium titanate anode delivering a specific capacity of 167 mAh g-1 at 0.1C and having comparable performances to conventional slurry-cast electrodes at current densities up to 100C. It also enables high flexibility in the design and fabrication of the electrodes where various advanced multilayered nanostructures can be tailored for optimal electrode performance by choosing cationic polyelectrolytes with different molecular sizes. A full-cell LIB with excellent mechanical resilience is built on porous insulating foams.

8.
Nat Commun ; 11(1): 3705, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694550

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Commun ; 11(1): 2747, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488183

RESUMEN

Two-dimensional membranes have gained enormous interest due to their potential to deliver precision filtration of species with performance that can challenge current desalination membrane platforms. Molybdenum disulfide (MoS2) laminar membranes have recently demonstrated superior stability in aqueous environment to their extensively-studied analogs graphene-based membranes; however, challenges such as low ion rejection for high salinity water, low water flux, and low stability over time delay their potential adoption as a viable technology. Here, we report composite laminate multilayer MoS2 membranes with stacked heterodimensional one- to two-layer-thick porous nanosheets and nanodisks. These membranes have a multimodal porous network structure with tunable surface charge, pore size, and interlayer spacing. In forward osmosis, our membranes reject more than 99% of salts at high salinities and, in reverse osmosis, small-molecule organic dyes and salts are efficiently filtered. Finally, our membranes stably operate for over a month, implying their potential for use in commercial water purification applications.

10.
Adv Mater ; 31(41): e1902977, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31408235

RESUMEN

The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3 C2 Tx ) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g-1 and a high conductivity of 295 S cm-1 . It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.


Asunto(s)
Celulosa/química , Capacidad Eléctrica , Fenómenos Mecánicos , Nanocompuestos/química , Electrodos
11.
Nat Commun ; 10(1): 2558, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186411

RESUMEN

We report Layer-by-Layer (LbL) self-assembly of pillared two-dimensional (2D) multilayers, from water, onto a wide range of substrates. This LbL method uses a small molecule, tris(2-aminoethyl) amine (TAEA), and a colloidal dispersion of Ti3C2Tx MXene to LbL self-assemble (MXene/TAEA)n multilayers, where n denotes the number of bilayers. Assembly with TAEA results in highly ordered (MXene/TAEA)n multilayers where the TAEA expands the interlayer spacing of MXene flakes by only ~ 1 Å and reinforces the interconnection between them. The TAEA-pillared MXene multilayers show the highest electronic conductivity of 7.3 × 104 S m-1 compared with all reported MXene multilayers fabricated by LbL technique. The (MXene/TAEA)n multilayers could be used as electrodes for flexible all-solid-state supercapacitors delivering a high volumetric capacitance of 583 F cm-3 and high energy and power densities of 3.0 Wh L-1 and 4400 W L-1, respectively. This strategy enables large-scale fabrication of highly conductive pillared MXene multilayers, and potentially fabrication of other 2D heterostructures.

12.
ACS Sens ; 4(6): 1603-1611, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31244007

RESUMEN

The sensitive detection of explosive and flammable gases is an extremely important safety consideration in today's industry. Identification of trace amounts of nonpolar analytes at ambient temperatures, however, is still a challenge because of their weak adsorption, and very few studies have been able to achieve it via a chemiresistive mechanism. Herein, we demonstrate the high performance of 2D vanadium carbide MXene (V2CTx) gas sensors with ultrahigh sensitivity toward nonpolar gases. The fabricated 2D V2CTx sensor devices consisting of single-/few-layer 2D V2CTx on polyimide film were able to detect both polar and nonpolar chemical species including hydrogen and methane with a very low limit of detection of 2 and 25 ppm, respectively, at room temperature (23 °C). The performance of the fabricated V2CTx gas sensors in detection of nonpolar gases surpasses that of previously reported state-of-the-art gas sensors based on other 2D materials.

13.
Nanoscale ; 11(22): 10716-10726, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31120085

RESUMEN

We report on the thermal stability of multilayered V2CTx MXenes under different atmospheres by combining in situ Raman spectroscopy with ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) in order to elucidate and monitor the molecular, electronic, and structural changes of both the surface and bulk of the V2CTx MXene which has recently received much attention. The MXene samples were heated up to 600 °C in inert (N2), oxidative (CO2, air), and reductive (H2) environments under similar conditions. In situ Raman showed that the V[double bond, length as m-dash]O vibration for two-dimensional vanadia is preserved up to 600 °C under N2, while its intensity reduces under H2. When heated above 300 °C under either CO2 or air, V2CTx slightly oxidizes or transforms into V2O5, respectively. Furthermore, SEM revealed the presence of an accordion-like layered structure for the MXene under N2 and H2, while under CO2 and air the layered structure collapses and forms VO2 (V4+) and V2O5 (V5+) crystals, respectively. XPS reveals that, regardless of the gas, surface V species oxidize above 300 °C during the dehydration process. Finally, we demonstrated that the partial dehydration of V2CTx results in the partial oxidation of the material, and the total dehydration is achieved once 700 °C is reached. We believe that our methodology is a unique alternative to tune the dehydration, oxidation, and properties of V2CTx, which allows for the expansion of applications of MXenes.

14.
ACS Nano ; 13(3): 3042-3053, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30844249

RESUMEN

Label-free nanopore technology for sequencing biopolymers such as DNA and RNA could potentially replace existing methods if improvements in cost, speed, and accuracy are achieved. Solid-state nanopores have been developed over the past two decades as physically and chemically versatile sensors that mimic biological channels, through which transport and sequencing of biomolecules have already been demonstrated. Of particular interest is the use of two-dimensional (2D) materials as nanopore substrates, since these can in theory provide the highest resolution readout (<1 nm of a biopolymer segment) and opportunities for electronic multiplexed readout through their interesting electronic properties. In this work, we report on nanopores comprising atomically thin flakes of 2D transition metal carbides called MXenes. We demonstrate a high-yield (60%), contamination-free, and alignment-free transfer method that involves their self-assembly at a liquid-liquid interface to large-scale (mm-sized) films composed of sheets, followed by nanopore fabrication using focused electron beams. Our work demonstrates the feasibility of MXenes, a class of hydrophilic 2D materials with over 20 compositions known to date, as nanopore membranes for DNA translocation and single-molecule sensing applications.


Asunto(s)
Hidróxido de Amonio/química , Técnicas Biosensibles , Carbono/química , ADN/análisis , Nanoporos , Elementos de Transición/química , Tamaño de la Partícula , Propiedades de Superficie
15.
Adv Mater ; 31(8): e1806931, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30589131

RESUMEN

Electrochemical capacitors (ECs) that store charge based on the pseudocapacitive mechanism combine high energy densities with high power densities and rate capabilities. 2D transition metal carbides (MXenes) have been recently introduced as high-rate pseudocapacitive materials with ultrahigh areal and volumetric capacitances. So far, 20 different MXene compositions have been synthesized and many more are theoretically predicted. However, since most MXenes are chemically unstable in their 2D forms, to date only one MXene composition, Ti3 C2 Tx , has shown stable pseudocapacitive charge storage. Here, a cation-driven assembly process is demonstrated to fabricate highly stable and flexible multilayered films of V2 CTx and Ti2 CTx MXenes from their chemically unstable delaminated single-layer flakes. The electrochemical performance of electrodes fabricated using assembled V2 CTx flakes surpasses Ti3 C2 Tx in various aqueous electrolytes. These electrodes show specific capacitances as high as 1315 F cm-3 and retain ≈77% of their initial capacitance after one million charge/discharge cycles, an unprecedented performance for pseudocapacitive materials. This work opens a new venue for future development of high-performance supercapacitor electrodes using a variety of 2D materials as building blocks.

16.
ACS Appl Mater Interfaces ; 10(31): 25949-25954, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30044609

RESUMEN

The capacitive properties of two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been the focus of much research in recent years. MXenes store charge by the pseudocapacitance mechanism (fast surface redox reactions) but can deliver their stored charge at much higher rates compared to other pseudocapacitive materials. Herein, the dependence of the electrochemical properties of MXenes on their lateral dimensions is reported. We show that synthesizing MXenes with controlled dimensions enables the design and fabrication of electrodes with high electronic and ionic conductivities. At low scan rates, electrodes fabricated using a mixture of small and large flakes could deliver very high specific gravimetric and volumetric capacitances of about 435 F g-1 and 1513 F cm-3, respectively. At a very high scan rate of 10 V s-1, the performance of the electrodes remained capacitive, demonstrating their ultrahigh-rate energy storage capability. This work outlines an effective method for the design and fabrication of MXene electrodes with high energy and power densities.

17.
ACS Nano ; 11(11): 11135-11144, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29039915

RESUMEN

Rechargeable aluminum batteries (Al batteries) can potentially be safer, cheaper, and deliver higher energy densities than those of commercial Li-ion batteries (LIBs). However, due to the very high charge density of Al3+ cations and their strong interactions with the host lattice, very few cathode materials are known to be able to reversibly intercalate these ions. Herein, a rechargeable Al battery based on a two-dimensional (2D) vanadium carbide (V2CTx) MXene cathode is reported. The reversible intercalation of Al3+ cations between the MXene layers is suggested to be the mechanism for charge storage. It was found that the electrochemical performance could be significantly improved by converting multilayered V2CTx particles to few-layer sheets. With specific capacities of more than 300 mAh g-1 at high discharge rates and relatively high discharge potentials, V2CTx MXene electrodes show one of the best performances among the reported cathode materials for Al batteries. This study can lead to foundations for the development of high-capacity and high energy density rechargeable Al batteries by showcasing the potential of a large family of intercalation-type cathode materials based on MXenes.


Asunto(s)
Aluminio/química , Cationes/química , Suministros de Energía Eléctrica , Electricidad , Electrodos , Sustancias Intercalantes/química , Litio/química , Vanadio/química
18.
ACS Appl Mater Interfaces ; 9(42): 37184-37190, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28953355

RESUMEN

Wearable gas sensors have received lots of attention for diagnostic and monitoring applications, and two-dimensional (2D) materials can provide a promising platform for fabricating gas sensors that can operate at room temperature. In the present study, the room temperature gas-sensing performance of Ti3C2Tx nanosheets was investigated. 2D Ti3C2Tx (MXene) sheets were synthesized by removal of Al atoms from Ti3AlC2 (MAX phases) and were integrated on flexible polyimide platforms with a simple solution casting method. The Ti3C2Tx sensors successfully measured ethanol, methanol, acetone, and ammonia gas at room temperature and showed a p-type sensing behavior. The fabricated sensors showed their highest and lowest response toward ammonia and acetone gas, respectively. The limit of detection of acetone gas was theoretically calculated to be about 9.27 ppm, presenting better performance compared to other 2D material-based sensors. The sensing mechanism was proposed in terms of the interactions between the majority charge carriers of Ti3C2Tx and gas species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...