Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2313791, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38973655

RESUMEN

Inhibition of disease-causing mutations using RNA interference (RNAi) has resulted in clinically approved medicines with additional candidates in late stage trials. However, targetable tissues currently in preclinical development are limited to liver following systemic intravenous (IV) administration because predictable delivery of siRNA to non-liver tissues remains an unsolved challenge. Here, evidence of durable extrahepatic gene silencing enabled by siRNA Selective ORgan Targeting lipid nanoparticles (siRNA SORT LNPs) to the kidneys, lungs, and spleen is provided. LNPs excel at dose-dependent silencing of tissue-enriched endogenous targets resulting in 60%-80% maximal knockdown after a single IV injection and up to 88% downregulation of protein expression in mouse lungs after two doses. To examine knockdown potency and unbiased organ targeting, B6.129TdTom/EGFP mice that constitutively express the TdTomato transgene across all cell types are utilized to demonstrate 58%, 45%, and 15% reduction in TdTomato fluorescence in lungs, spleen, and kidneys, respectively. Finally, physiological relevance of siRNA SORT LNP-mediated gene silencing is established via acute suppression of endogenous Tie2 which induces lung-specific phenotypic alteration of vascular endothelial barrier. Due to plethora of extrahepatic diseases that may benefit from RNAi interventions, it is anticipated that the findings will expand preclinical landscape of therapeutic targets beyond the liver.

2.
Proc Natl Acad Sci U S A ; 120(52): e2313009120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109533

RESUMEN

Genetic medicines have the potential to treat various diseases; however, certain ailments including inflammatory diseases and cancer would benefit from control over extracellular localization of therapeutic proteins. A critical gap therefore remains the need to develop and incorporate methodologies that allow for posttranslational control over expression dynamics, localization, and stability of nucleic acid-generated protein therapeutics. To address this, we explored how the body's endogenous machinery controls protein localization through signal peptides (SPs), including how these motifs could be incorporated modularly into therapeutics. SPs serve as a virtual zip code for mRNA transcripts that direct the cell where to send completed proteins within the cell and the body. Utilizing this signaling biology, we incorporated secretory SP sequences upstream of mRNA transcripts coding for reporter, natural, and therapeutic proteins to induce secretion of the proteins into systemic circulation. SP sequences generated secretion of various engineered proteins into the bloodstream following intravenous, intramuscular, and subcutaneous SP mRNA delivery by lipid, polymer, and ionizable phospholipid delivery carriers. SP-engineered etanercept/TNF-α inhibitor proteins demonstrated therapeutic efficacy in an imiquimod-induced psoriasis model by reducing hyperkeratosis and inflammation. An SP-engineered anti-PD-L1 construct mediated mRNA encoded proteins with longer serum half-lives that reduced tumor burden and extended survival in MC38 and B16F10 cancer models. The modular nature of SP platform should enable intracellular and extracellular localization control of various functional proteins for diverse therapeutic applications.


Asunto(s)
Dermatitis , Melanoma , Psoriasis , Humanos , Animales , Melanoma/tratamiento farmacológico , Melanoma/genética , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Inflamación/patología , Señales de Clasificación de Proteína , ARN Mensajero/genética , Modelos Animales de Enfermedad
3.
J Control Release ; 361: 361-372, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536547

RESUMEN

Messenger RNA (mRNA) can treat genetic disease using protein replacement or genome editing approaches but requires a suitable carrier to circumnavigate biological barriers and access the desired cell type within the target organ. Lipid nanoparticles (LNPs) are widely used in the clinic for mRNA delivery yet are limited in their applications due to significant hepatic accumulation because of the formation of a protein corona enriched in apolipoprotein E (ApoE). Our lab developed selective organ targeting (SORT) LNPs that incorporate a supplementary component, termed a SORT molecule, for tissue-specific mRNA delivery to the liver, spleen, and lungs of mice. Mechanistic work revealed that the biophysical class of SORT molecule added to the LNP forms a distinct protein corona that helps determine where in the body mRNA is delivered. To better understand which plasma proteins could drive tissue-specific mRNA delivery, we characterized a panel of quaternary ammonium lipids as SORT molecules to assess how chemical structure affects the organ-targeting outcomes and protein corona of lung-targeting SORT LNPs. We discovered that variations in the chemical structure of both the lipid alkyl tail and headgroup impact the potency and specificity of mRNA delivery to the lungs. Furthermore, changes to the chemical structure alter the quantities and identities of protein corona constituents in a manner that correlates with organ-targeting outcomes, with certain proteins appearing to promote lung targeting whereas others reduce delivery to off-target organs. These findings unveil a nuanced relationship between LNP chemistry and endogenous targeting, where the ensemble of proteins associated with an LNP can play various roles in determining the tissue-specificity of mRNA delivery, providing further design criteria for optimization of clinically-relevant nanoparticles for extrahepatic delivery of genetic payloads.


Asunto(s)
Compuestos de Amonio , Nanopartículas , Corona de Proteínas , Ratones , Animales , Lípidos/química , ARN Mensajero/metabolismo , Liposomas , Nanopartículas/química , ARN Interferente Pequeño/química
4.
J Control Release ; 327: 26-34, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735879

RESUMEN

Buccal drug delivery offers a potential non-invasive means of delivering therapeutics to patients. Despite the promise, the feasibility of transporting proteins and peptides into systemic circulation from buccal administration remains a daunting challenge. Here, we report the fabrication of a biodegradable polymeric patch for buccal delivery of insulin using chitosan as the mucoadhesive matrix and ionic liquids (ILs)/deep eutectic solvent (DES) as the transport facilitator. Insulin is mixed with ILs/DES made from Choline and Geranic acid (CAGE) to form a viscoelastic CAGE gel and sandwiched between two layers of a biodegradable polymer. The rheological properties of the CAGE gel were dominated by the elastic modulus and suggested a solid-like viscoelastic behavior. CAGE induced a 7-fold increase in the cumulative insulin transport across the ex vivo porcine buccal tissue (~26% of loaded insulin) which was also confirmed by confocal microscopy. The CAGE/insulin patches placed in the rat buccal pouch in vivo lowered blood glucose levels in a dose-dependent manner (up to 50% drop recorded) with no obvious tissue damage at the application site. The pharmacokinetic performance of the delivered insulin indicated a sustained profile as serum insulin levels plateaued after 3 h for the duration of study. The safety and efficacy of the polymeric patch using insulin as a model drug holds significant promise as a platform technology to deliver injectables through the buccal route.


Asunto(s)
Insulina , Líquidos Iónicos , Administración Bucal , Animales , Sistemas de Liberación de Medicamentos , Humanos , Mucosa Bucal , Ratas , Porcinos
5.
Front Biosci (Landmark Ed) ; 25(10): 1854-1874, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32472761

RESUMEN

Lack of suitable surface properties in biomaterials is an acute challenge for their utilization in nucleic acid delivery, since surface plays a vital role in cell adhesion/uptake and immunity. Low pressure cold plasma is a promising technology for functionalization and surface modification of materials, in an effective, environment friendly and economical way. In this investigation we have modified the surface of silver nanoparticles (AgNPs) with chitosan biopolymer, using plasma treatment, to extend their application scope in intracellular DNA delivery. The plasma functionalized; chitosan modified AgNPs (MetaloPolymeric Nanocarriers; MPNCs) possessed superior biocompatibility compared to unmodified AgNPs. Carboxylic groups were incorporated on the surface of nanosilver using 3600 rotating pulsed plasma reactor and acrylic acid vapors were used as precursor gas. Pulsed plasma polymerization process was optimized with respect to working pressure of the system, duty cycle for pulsing, time of treatment and flow rate. Biocompatibility of the plasma functionalized nanosilver was enhanced by coupling it with Chitosan Oligosaccharide (COS), using EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) to form amide linkages. The resulting MPNCs showed high cell viability and bio-stability, which was attributed to plasma processing of nanosilver and its association with COS. In vitro cellular studies illustrated significant uptake of nanoplexes. The study suggested the potential of plasma functionalization for manipulating surfaces of metallic nanoparticles to enhance their application in intracellular gene delivery.


Asunto(s)
Materiales Biocompatibles/química , Técnicas de Transferencia de Gen , Nanopartículas del Metal/química , Plata/química , Células A549 , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Quitosano/química , ADN/genética , ADN/metabolismo , Células HeLa , Humanos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oligosacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
6.
Enzyme Microb Technol ; 106: 48-54, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28859809

RESUMEN

Controlling disease outbreaks is a major challenge in aquaculture farms and conventional methods are often ineffective. Nutritional supplementation and probiotic preparations help in reducing severity of such infections. The generally regarded as safe yeast (Yarrowia lipolytica) was used in the current study. A marine strain of Y. lipolytica exhibited tolerance towards sodium selenite and formed cell associated selenium nanoparticles (SeNPs). The synthesized nanoparticles were characterized by UV-vis spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) observations. Fourier transform infra-red (FTIR) spectroscopy indicated the role of carboxylic and amine groups in the synthesis of nanoparticles. This SeNP-enriched biomass was used as feed for the model aquaculture system, Artemia salina and compared with normal feed, baker's yeast (Saccharomyces cerevisiae). A. salina fed with SeNP-enriched biomass, showed increased survival rates (96.66%) as compared to those fed with S. cerevisiae (60.0%). The size of the larvae fed with SeNP-enriched biomass of Y. lipolytica was also found to be larger. Additionally, larval groups fed with SeNP-enriched biomass were better protected (70.0% survival) against V. harveyi infection when compared with groups fed with S. cerevisiae (24.44%). This combination of selenium in the nanoparticle form associated with the biomass of Y. lipolytica has potential application in improving health of aquaculture species in farms.


Asunto(s)
Artemia/crecimiento & desarrollo , Artemia/metabolismo , Nanopartículas del Metal , Selenio/farmacocinética , Yarrowia/metabolismo , Alimentación Animal/análisis , Animales , Acuicultura/métodos , Biomasa , Suplementos Dietéticos/análisis , Larva/crecimiento & desarrollo , Larva/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Vibriosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA