Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NanoImpact ; 34: 100502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508516

RESUMEN

Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.


Asunto(s)
Agricultura , Cambio Climático , Nanotecnología , Agricultura/métodos , Inseguridad Alimentaria , Humanos , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes , Abastecimiento de Alimentos
2.
J Agric Food Chem ; 71(44): 16493-16503, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890448

RESUMEN

Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.


Asunto(s)
Fósforo , Suelo , Agricultura , Polímeros , Fertilizantes
3.
Pestic Biochem Physiol ; 194: 105486, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532316

RESUMEN

In this study, zinc and copper oxide nanoparticles (NPs) were synthesized using hemp (Cannabis sativa L.) leaves (ZnONP-HL and CuONP-HL), and their antifungal potential was assessed against Fusarium virguliforme in soybean (Glycine max L.). Hemp was selected because it is known to contain large quantities of secondary metabolites that can potentially enhance the reactivity of NPs through surface property modification. Synthesizing NPs with biologically derived materials allows to avoid the use of harsh and expensive synthetic reducing and capping agents. The ZnONP-HL and CuONP-HL showed average grain/crystallite size of 13.51 nm and 7.36 nm, respectively. The biologically synthesized NPs compared well with their chemically synthesized counterparts (ZnONP chem, and CuONP chem; 18.75 nm and 10.05 nm, respectively), confirming the stabilizing role of hemp-derived biomolecules. Analysis of the hemp leaf extract and functional groups that were associated with ZnONP-HL and CuONP-HL confirmed the presence of terpenes, flavonoids, and phenolic compounds. Biosynthesized NPs were applied on soybeans as bio-nano-fungicides against F. virguliforme via foliar treatments. ZnONP-HL and CuONP-HL at 200 µg/mL significantly (p < 0.05) increased (∼ 50%) soybean growth, compared to diseased controls. The NPs improved the nutrient (e.g., K, Ca, P) content and enhanced photosynthetic indicators of the plants by 100-200%. A 300% increase in the expression of soybean pathogenesis related GmPR genes encoding antifungal and defense proteins confirmed that the biosynthesized NPs enhanced disease resistance against the fungal phytopathogen. The findings from this study provide novel evidence of systemic suppression of fungal disease by nanobiopesticides, via promoting plant defense mechanisms.


Asunto(s)
Cannabis , Zinc , Nanopartículas del Metal , Cannabis/metabolismo , Glycine max , Antifúngicos/metabolismo , Hojas de la Planta/metabolismo
4.
Plants (Basel) ; 11(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432809

RESUMEN

Carob (Ceratonia siliqua L.) is a tree crop cultivated extensively in the eastern Mediterranean regions but that has become naturalized in other regions as well. The present study focused on the green synthesis of zinc oxide nanoparticles (ZnONPs) from Carob and their evaluation for antimicrobial activity in bacteria and fungi. The synthesized ZnONPs showed strong antibacterial activity against Staphylococcus aureus ATCC 25 923 (92%). The NPs inhibited the growth of pathogenic yeast strains, including Candida albicans ATCC90028, Candida krusei ATCC6258, and Candida neoformans ATCC14116, by 90%, 91%, and 82%, respectively, compared to the control. Fungal inhibition zones with the ZnONPs were 88.67% and 90%, respectively, larger for Aspergillus flavus 15UA005 and Aspergillus fumigatus ATCC204305, compared to control fungal growth. This study provides novel information relevant for plant-based development of new and potentially antimicrobial ZnONPs based on extracts. In particular, the development and application of phytogenic nanoparticles enhances the biocompatibility of nano-scale materials, thereby allowing to tune effects to prevent adverse outcomes in non-target biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA