Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 15(4): 2302-18, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20428043

RESUMEN

The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, glucose, or fructose. The measured genes are: from the cytosolic arm of terpene biosynthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), farnesyl disphosphate (FPS); from the plastid arm of terpene biosynthesis, 1-deoxyxylulose-5-phosphate synthase (DXS), 1-deoxyxylulouse 5-phosphate reductoisomerase (DXR); from the dedicated artemisinin pathway amorpha-4,11-diene synthase (ADS), and the P450, CYP71AV1 (CYP). Changes in intracellular concentrations of artemisinin (AN) and its precursors, dihydroartemisinic acid (DHAA), artemisinic acid (AA), and arteannuin B (AB) were also measured in response to these three sugars. FPS, DXS, DXR, ADS and CYP transcript levels increased after growth in glucose, but not fructose. However, the kinetics of these transcripts over 14 days was very different. AN levels were significantly increased in glucose-fed seedlings, while levels in fructose-fed seedlings were inhibited; in both conditions this response was only observed for 2 days after which AN was undetectable until day 14. In contrast to AN, on day 1 AB levels doubled in seedlings grown in fructose compared to those grown in glucose. Results showed that transcript level was often negatively correlated with the observed metabolite concentrations. When seedlings were gown in increasing levels of AN, some evidence of a feedback mechanism emerged, but mainly in the inhibition of AA production. Together these results show the complex interplay of exogenous sugars on the biosynthesis of artemisinin in young A. annua seedlings.


Asunto(s)
Antimaláricos/metabolismo , Artemisia annua/efectos de los fármacos , Artemisininas/metabolismo , Fructosa/farmacología , Glucosa/farmacología , Sacarosa/farmacología , Artemisia annua/genética , Artemisia annua/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos
2.
Biotechnol J ; 4(12): 1704-11, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19946881

RESUMEN

Diabetes is one of the nation's most prevalent, debilitating and costly diseases. For diabetes, frequent insulin treatment is very expensive and may increase anti-insulin antibody production, which may cause unwanted side effects. Corosolic acid may also have some efficacy in the treatment of diabetes, but without induction of anti-insulin antibodies. Recently, corosolic acid from Lagerstroemia speciosa L. leaf extracts has been reported to act via an indirect mechanism (unlike insulin) in animal experiments. The insulin-complementary anti-diabetic therapeutic value observed in these Japanese preliminary clinical trials has led to renewed interest in the biosynthesis of this compound. So far, there has been no clear evidence for a corosolic acid biosynthetic pathway in plants. This article provides possible roles of corosolic acid and hypothetical information on the biosynthetic pathway in plants.


Asunto(s)
Hipoglucemiantes/metabolismo , Lagerstroemia/metabolismo , Extractos Vegetales/química , Triterpenos/metabolismo , Hipoglucemiantes/química , Redes y Vías Metabólicas , Hojas de la Planta/química , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA