Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375563

RESUMEN

Pulsed laser deposition on 3-dimensional micro-objects of complex morphology is demonstrated by the paradigmatic growth of cellulose and polymer/Y3Al5O12:Ce phosphor composite nanolayers. Congruent materials transfer is a result of multicomponent ablation performed by relatively low fluence (<200 mJ cm-2) ArF excimer laser pulses (λ = 193 nm). Films grown on optical and engineering components, having a thickness from ~50 nm to more than ~300 nm, are durable, well adherent and maintain the structural and functional properties of the parent solids. The results verify the unique capabilities of deep-ultraviolet pulsed laser deposition of novel functional nanostructures on arbitrary surface morphologies and highlight its potential in future 3-dimensional nanotechnologies.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287194

RESUMEN

Systolic nanofabrication is demonstrated via conformal downsizing of three-dimensional micropatterned monolithic master-casts made of extremely nanoporous aerogel and xerogel materials. The porous solid skeleton collapses by thermal treatment, generating miniaturized replicas, which preserve the original stereometric forms and incorporate minified nanoscale patterns. Paradigmatic holographic and biomimetic nanoarchitectures are conformally downsized by ~4×, yielding subwavelength surface features of less than ~150 nm. The operations demonstrate the super-resolution capabilities of this alternative concept and its potential evolution to an innovative nanotechnology of the future.

3.
J Biophotonics ; 13(7): e202000044, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277604

RESUMEN

In-vitro experimental parametric studies of laser ablation using natural sialoliths and artificial stones have been performed toward an efficient laser treatment of sialolithiasis. Surface microstructure and water adsorption become critical for coupling high power pulsed Ho:YAG laser radiation (λ = 2080 nm, τ ∼250 µsec), inducing ablative interactions and stone fragmentation. Results reveal a generic trend, with single pulse laser energy density threshold for sialolith ablative erosion at ∼200 J cm-2 (corresponding to intensity ∼800 kW cm-2 ) and fragmentation rates reaching ∼1 mm/pulse at ∼2400 J cm-2 . This process shows no saturation, suggesting that very high energy density irradiation at low pulse repetition rate is an efficient approach. Such operation facilitates rapid cooling and minimal thermal loading of the oral and maxillofacial area, thus causing negligible adverse effects. The method is expected to contribute to the establishment of an easy and optimal therapeutic protocol for sialolithiasis pathology.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Litotripsia por Láser , Terapia por Luz de Baja Intensidad , Cálculos de las Glándulas Salivales , Humanos , Cálculos de las Glándulas Salivales/cirugía
4.
ACS Omega ; 3(8): 10008-10018, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459129

RESUMEN

Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer.

5.
Opt Express ; 20(22): 24735-40, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23187237

RESUMEN

The origins and first demonstration of structurally stable solids formed by use of radiation forces are presented. By experimentally proving that radiation forces can indeed produce stable solid material forms, a novel method enabling two- and three-dimensional (2d and 3d) microfabrication is introduced: An optical, non-contact single-step physical operation, reversible with respect to materials nature, based on the sole use of radiation forces. The present innovation is elucidated by the formation of polyisoprene and polybutadiene micro-solids, as well as plasmonic and fluorescent hybrids, respectively comprising Au nanoparticles and CdS quantum dots, together with novel concepts of polymeric fiber-drawing by radiation forces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...