Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 308(Pt 3): 136567, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152826

RESUMEN

5-Hydroxymethylfurfural (HMF) is a fermentation inhibitor which is formed during acid-based thermochemical pre-treatment of biomass. The present study involves two approaches for HMF conversion; the first includes screening and identification of fungal strains which produce oxidoreductases for HMF bioconversion, and thereafter evaluating their roles in HMF conversion. Out of the ten fungal strains screened, genetically engineered Trichoderma atroviride (Lac+) showed maximum HMF bioconversion and the activities of ligninolytic enzymes produced were noted. Maximum HMF conversion of 99% was achieved at pH 5.0 and 30 °C when 72 h old 10% inoculum of T. atroviride (Lac+) was utilized for 6 days. Based on the fungal bioconversion of HMF to 2, 5 diformylfuran with 58% yield, laccase was observed to influence the conversion process. Thus, a comparative study was established on HMF conversion by 100 U/mL of commercial laccases and partially purified laccase from T. atroviride (Lac+). In the presence of TEMPO, T. atroviride laccase showed comparable HMF conversion to commercial laccases, which establishes the efficiency of fungi and ligninolytic enzymes in bioconversion of HMF to value-added products.


Asunto(s)
Hypocreales , Trichoderma , Biomasa , Furaldehído/análogos & derivados , Lacasa
2.
Environ Res ; 214(Pt 3): 114012, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952747

RESUMEN

Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.


Asunto(s)
Biotecnología , Aguas Residuales , Biocatálisis , Biomasa
3.
Chemosphere ; 286(Pt 3): 131847, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34392201

RESUMEN

The current study aimed in enhancing the efficiency of alkaline treatment for CECs remediation in biosolids through the application of RSM and ANN. Due to the seasonal variation of CECs in biosolids, a complete CECs profile over a period of three years were performed. Out of 64 targeted CECs, 13 PhACs (70.1 µg/kg) and 10 pesticides (57.2 µg/kg) were detected in biosolids. In order to enhance the remediation efficiency of CECs by alkaline treatment, process parameters - pH (9.0-13.0), time (3.0-12.0 h) and biosolids age (1-28 days) were optimized by statistical modelling. Using Box-Behnken design, experiments were designed and the resultant data was employed as input for model building using RSM and ANN. The developed mathematical model for alkaline treatment of biosolids using ANN predicted CECs removal with 3.2-fold lower MSE and exhibited high regression coefficient (R2 > 0.99) than the conventional RSM model. Further, the multiparameter model was optimized for achieving maximum of 95.7 % CECs removal using ANN-GA. On analyzing the acute toxicity of alkaline treated residual biosolids under the optimized conditions, a reduction in LC50 by an average of 2.1-fold than initial biosolids was observed. This study not only established the application of statistical modelling in the development of an efficient remediation strategy for biosolids, which can be further applied for large-scale remediation process, but also proved the reliability and efficiency of ANN-GA.


Asunto(s)
Modelos Teóricos , Redes Neurales de la Computación , Biosólidos , Modelos Estadísticos , Reproducibilidad de los Resultados
4.
Int J Biol Macromol ; 170: 583-592, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385453

RESUMEN

The present work pronounces the three phase partitioning (TPP)-facilitated preparation of porous cross-linked Candida antarctica lipase B (CaLB) aggregates (pCLEAs) for 5-Hydroxymethylfurfural (HMF) esters synthesis. CLEAs and pCLEAs of CaLB were prepared with eupergit as the support under the optimized conditions of pH 8.0, eupergit/protein ratio of 3.0:1.0, 50 mM cross-linker concentration and 3.3 mg/mL BSA concentration in 4 h. The optimum starch concentration for pCLEAs was 0.20%, m/v. The maximum biocatalytic load was 650 U/g (CLEAs) and 721 U/g (pCLEAs), and the immobilized biocatalysts were stable over a pH range of 6.0-9.0 and temperature range of (40-60)°C. The BET surface area of CLEAs and pCLEAs were 21.3 and 29.1 m2/g, respectively, and the catalytic efficiency of pCLEAs was 2.2-fold higher than that of CLEAs. Subsequently, the pCLEAs of CaLB were utilized for the manufacturing of industrially significant HMF esters. Under the optimized transesterification conditions, HMF conversion with pCLEAs CaLB was 1.41- and 1.25-fold higher than with free and CLEAs CaLB, respectively. The pCLEAs were reused upto 8 consecutive transesterification cycles and the produced HMF esters reduced the surface tension of water from 72 mN/m to 32.6 mN/m, proving its potential application as surface-active compounds.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Esterificación/efectos de los fármacos , Proteínas Fúngicas/química , Furaldehído/análogos & derivados , Lipasa/química , Biocatálisis/efectos de los fármacos , Catálisis/efectos de los fármacos , Enzimas Inmovilizadas/química , Ésteres/química , Furaldehído/química , Concentración de Iones de Hidrógeno , Porosidad , Almidón/química , Tensoactivos/química
5.
Front Bioeng Biotechnol ; 9: 770435, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35223809

RESUMEN

In this study, Pleurotus dryinus was grown on municipal biosolids (BS) as the substrate to produce laccase for the removal of pesticides (fungicides, herbicides, and insecticides) from wastewater. Among the various types of BS tested, sterilized biosolids were the most promising substrate for laccase production by P. dryinus with a maximal laccase activity (162.1 ± 21.1 U/g dry substrate), followed by hygenized biosolids (96.7 ± 17.6 U/g dry substrate), unsterilized biosolids (UBS) (31.9 ± 1.2 U/g dry substrate), and alkali-treated biosolids (8.2 ± 0.4 U/g dry substrate). The ultrasound-assisted extraction of this enzyme from fermented UBS was carried out with 0.1 M phosphate buffer at pH 7.0, which increased the enzyme activity of the crude extract by 30%. To test the catalytic potential of the biocatalyst in real matrices, 1 U/ml of recovered crude laccase extract was applied for 24 h for the removal of 29 pesticides (nine fungicides, 10 herbicides, and 10 insecticides) either separately or as a mixture from spiked biologically treated wastewater effluent. When treated with crude enzyme extract, high-priority herbicides metolachlor and atrazine were completely removed, while 93%-97% of the insecticides aldicarb, spinosad, and azinphos-methyl and up to 91% of kresoxim-methyl were removed. Promising results were obtained with BS-derived crude enzyme extract exhibiting improved pesticides removal, which may be due to the mediator effect resulting from the catalytic transformation of other molecules in the cocktail. The results demonstrated a promising integrated bioprocess for the removal of pesticides in wastewater using crude laccase obtained from BS.

6.
Waste Manag ; 120: 373-381, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33341660

RESUMEN

Trace organic contaminants (TrOCs) in biosolids is creating potential threats for reuse of biosolids. Out of the tested 64 trace organic contaminants, seven pharmaceutically active compounds (PhACs), and three pesticides were detected in biosolids from a municipal wastewater treatment plant. This study encompasses the removal of TrOCs and improvement in the aerobic digestion of biosolids by various pretreatments including utilization of indigenous microbes present in biosolids (T1), the effect of an enzymatic pretreatment (T2), biostimulation by the addition of an external carbon source (T3) and the synergic effect of biostimulation and enzymatic pretreatment (T4). After 28 days of aerobic digestion, total PhACs removal was 44% with T1, which improved to 51%, 54% and 62% in T2, T3 and T4, respectively. Also, total pesticides removal was 10% in T1, which enhanced to 44%, 14% and 54% in T2, T3 and T4, respectively. The extracellular enzyme activities were also monitored in all the treatments and the maximum activities (114 ± 11 U/L lipase, 382 ± 29 U/L phosphatase, 155 ± 8 U/L protease, 304 ± 26 U/L amylase, 108 ± 7 U/L laccase, and 63 ± 2 U/L lignin peroxidase) were observed in T4 after 28 days of digestion. Thus, this study aids in providing changing aspects of enzyme profiles during these processes and the enhanced bioremediation of biosolids through the hydrolytic and oxidoreductase enzymes produced by the indigenous microorganisms.


Asunto(s)
Biosólidos , Lacasa , Biodegradación Ambiental , Hidrólisis
7.
J Environ Manage ; 271: 110995, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32778284

RESUMEN

The current work focuses on the production of glucose oxidase (GOD) in sterilized biosolid (BS) slurries containing BS and municipal wastewater effluent. Various parameters were optimized for maximizing the GOD production and the effects of biostimulation on GOD production was investigated by adding synthetic media components. The studies on inoculum characteristics at an inoculum age of 72 h and inoculum size of 20% (w/v) produced high GOD activities of around 6012 U/L in 25% (dw/v) BS media. Further, the effect of ultrasonication time was determined to release BS-bound GOD in order to maximize enzymes recovery. Using 1000 U/L of the BS-based GOD for 0.55 M glucose oxidation produced the maximum H2O2 concentration of 216 ppm. The produced H2O2 was utilized for bio-Fenton based advanced oxidation process for the partial removal of 15 pharmaceutically active compounds.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Biosólidos , Glucosa Oxidasa , Hierro , Oxidación-Reducción , Aguas Residuales
8.
IET Nanobiotechnol ; 11(3): 213-224, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28476976

RESUMEN

Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano-engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater. The use of these materials in water treatment results in markedly improved performance features like large surface area, good volumetric potential, extra shelf-lifetime, less mechanical stress, stability under operational conditions with excellent sorption behaviour, no secondary pollution, strong chelating capabilities and they are easy to recover and reuse. This review intends to serve as a one-stop-reference by bringing together all the recent research works on nanoparticles synthesis and its advantages as adsorbents in the treatment of heavy metal polluted wastewater that have so far been undertaken, thereby providing researchers with a deep insight and bridging the gap between past, present and future of the elegant nanosorbents.


Asunto(s)
Metales Pesados/aislamiento & purificación , Nanopartículas/química , Ultrafiltración/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Ensayo de Materiales , Metales Pesados/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA