Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712183

RESUMEN

Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.

2.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712022

RESUMEN

Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.

3.
J Neurophysiol ; 121(4): 1491-1500, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785807

RESUMEN

The functional state of denervated muscle is a critical factor in the ability to restore movement after injury- or disease-related paralysis. Here we used peripheral optogenetic stimulation and transcriptome profiling in the mouse whisker system to investigate the time course of changes in neuromuscular function following complete unilateral facial nerve transection. While most skeletal muscles rapidly lose functionality after lower motor neuron denervation, optogenetic muscle stimulation of the paralyzed whisker pad revealed sustained increases in the sensitivity, velocity, and amplitude of whisker movements, and reduced fatigability, starting 48 h after denervation. RNA-seq analysis showed distinct regulation of multiple gene families in denervated whisker pad muscles compared with the atrophy-prone soleus, including prominent changes in ion channels and contractile fibers. Together, our results define the unique functional and transcriptomic landscape of denervated facial muscles and have general implications for restoring movement after neuromuscular injury or disease. NEW & NOTEWORTHY Optogenetic activation of muscle can be used to noninvasively induce movements and probe muscle function. We used this technique in mice to investigate changes in whisker movements following facial nerve transection. We found unexpectedly enhanced functional properties of whisker pad muscle following denervation, accompanied by unique transcriptomic changes. Our findings highlight the utility of the mouse whisker pad for investigating the restoration of movement after paralysis.


Asunto(s)
Músculo Esquelético/metabolismo , Transcriptoma , Vibrisas/metabolismo , Animales , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Femenino , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Desnervación Muscular , Fatiga Muscular , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Optogenética , Vibrisas/inervación , Vibrisas/fisiología
4.
J Biol Rhythms ; 33(2): 179-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29671710

RESUMEN

Mice with targeted gene disruption have provided important information about the molecular mechanisms of circadian clock function. A full understanding of the roles of circadian-relevant genes requires manipulation of their expression in a tissue-specific manner, ideally including manipulation with high efficiency within the suprachiasmatic nuclei (SCN). To date, conditional manipulation of genes within the SCN has been difficult. In a previously developed mouse line, Cre recombinase was inserted into the vesicular GABA transporter (Vgat) locus. Since virtually all SCN neurons are GABAergic, this Vgat-Cre line seemed likely to have high efficiency at disrupting conditional alleles in SCN. To test this premise, the efficacy of Vgat-Cre in excising conditional (fl, for flanked by LoxP) alleles in the SCN was examined. Vgat-Cre-mediated excision of conditional alleles of Clock or Bmal1 led to loss of immunostaining for products of the targeted genes in the SCN. Vgat-Cre+; Clockfl/fl; Npas2m/m mice and Vgat-Cre+; Bmal1fl/fl mice became arrhythmic immediately upon exposure to constant darkness, as expected based on the phenotype of mice in which these genes are disrupted throughout the body. The phenotype of mice with other combinations of Vgat-Cre+, conditional Clock, and mutant Npas2 alleles also resembled the corresponding whole-body knockout mice. These data indicate that the Vgat-Cre line is useful for Cre-mediated recombination within the SCN, making it useful for Cre-enabled technologies including gene disruption, gene replacement, and opto- and chemogenetic manipulation of the SCN circadian clock.


Asunto(s)
Alelos , Proteínas CLOCK/genética , Núcleo Supraquiasmático , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Femenino , Integrasas , Masculino , Ratones , Ratones Noqueados
5.
Proc Natl Acad Sci U S A ; 115(10): E2437-E2446, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463694

RESUMEN

Circadian disruption as a result of shift work is associated with adverse metabolic consequences. Internal desynchrony between the phase of the suprachiasmatic nuclei (SCN) and peripheral clocks is widely believed to be a major factor contributing to these adverse consequences, but this hypothesis has never been tested directly. A GABAergic Cre driver combined with conditional casein kinase mutations (Vgat-Cre+CK1δfl/flεfl/+ ) was used to lengthen the endogenous circadian period in GABAergic neurons, including the SCN, but not in peripheral tissues, to create a Discordant mouse model. These mice had a long (27.4 h) behavioral period to which peripheral clocks entrained in vivo, albeit with an advanced phase (∼6 h). Thus, in the absence of environmental timing cues, these mice had internal desynchrony between the SCN and peripheral clocks. Surprisingly, internal desynchrony did not result in obesity in this model. Instead, Discordant mice had reduced body mass compared with Cre-negative controls on regular chow and even when challenged with a high-fat diet. Similarly, internal desynchrony failed to induce glucose intolerance or disrupt body temperature and energy expenditure rhythms. Subsequently, a lighting cycle of 2-h light/23.5-h dark was used to create a similar internal desynchrony state in both genotypes. Under these conditions, Discordant mice maintained their lower body mass relative to controls, suggesting that internal desynchrony did not cause the lowered body mass. Overall, our results indicate that internal desynchrony does not necessarily lead to metabolic derangements and suggest that additional mechanisms contribute to the adverse metabolic consequences observed in circadian disruption protocols.


Asunto(s)
Caseína Cinasa 1 épsilon/genética , Quinasa Idelta de la Caseína/genética , Relojes Circadianos , Neuronas GABAérgicas/enzimología , Núcleo Supraquiasmático/fisiología , Animales , Caseína Cinasa 1 épsilon/deficiencia , Quinasa Idelta de la Caseína/deficiencia , Ritmo Circadiano , Femenino , Técnicas de Inactivación de Genes , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Supraquiasmático/enzimología
6.
Physiol Behav ; 179: 200-207, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645689

RESUMEN

Photic entrainment of the murine circadian system can typically be explained with a discrete model in which light exposures near dusk and dawn can either advance or delay free-running rhythms to match the external light cycle period. In most mouse strains, the magnitude of those phase shifts is limited to several hours per day; however, the BALB/cJ mouse can re-entrain to large (6-8hour) phase advances of the light/dark cycle. In this study, we demonstrate that the circadian responses of BALB/cJ mice are dependent on duration as well as timing of light exposure, with significantly larger phase shifts resulting from >6-hour light exposures, yet loss of entrainment to photoperiods of <2-3hours per day or to skeleton photoperiods. Intermittent light exposures of the same total duration but distributed differentially over the same period of time as that of a 6-hour phase advance of the light cycle yielded phase shifts of different magnitudes depending on the pattern of exposure. Both negative and positive masking responses to light and darkness, respectively, were exaggerated in BALB/cJ mice under a T7 light cycle, but were not responsible for their rapid re-entrainment to chronic phase shifting of the light dark cycle. These results collectively suggest that the innately jetlag-resistant BALB/cJ mouse circadian system provides an alternative murine model in which to elucidate the limitations of photic entrainment observed in other commonly used strains of mice.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Luz , Ratones Endogámicos BALB C , Actividad Motora/efectos de la radiación , Fotoperiodo , Actigrafía , Animales , Masculino , Ratones Endogámicos BALB C/fisiología , Ratones Endogámicos C57BL/fisiología , Estimulación Luminosa/métodos , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA