Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotrauma Rep ; 5(1): 483-496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036433

RESUMEN

Cerebrovascular pressure reactivity plays a key role in maintaining constant cerebral blood flow. Unfortunately, this mechanism is often impaired in acute traumatic neural injury states, exposing the already injured brain to further pressure-passive insults. While there has been much work on the association between impaired cerebrovascular reactivity following moderate/severe traumatic brain injury (TBI) and worse long-term outcomes, there is yet to be a comprehensive review on the association between cerebrovascular pressure reactivity and intracranial pressure (ICP) extremes. Therefore, we conducted a systematic review of the literature for all studies presenting a quantifiable statistical association between a continuous measure of cerebrovascular pressure reactivity and ICP in a human TBI cohort. The methodology described in the Cochrane Handbook for Systematic Reviews was used. BIOSIS, Cochrane Library, EMBASE, Global Health, MEDLINE, and SCOPUS were all searched from their inceptions to March of 2023 for relevant articles. Full-length original works with a sample size of ≥10 patients with moderate/severe TBI were included in this review. Data were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A total of 16 articles were included in this review. Studies varied in population characteristics and statistical tests used. Five studies looked at transcranial Doppler-based indices and 13 looked at ICP-based indices. All but two studies were able to present a statistically significant association between cerebrovascular pressure reactivity and ICP. Based on the findings of this review, impaired reactivity seems to be associated with elevated ICP and reduced ICP waveform complexity. This relationship may allow for the calculation of patient-specific ICP thresholds, past which cerebrovascular reactivity becomes persistently deranged. However, further work is required to better understand this relationship and improve algorithmic derivation of such individualized ICP thresholds.

2.
Comput Biol Med ; 178: 108766, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905893

RESUMEN

Traumatic brain injury (TBI) poses a significant global public health challenge necessitating a profound understanding of cerebral physiology. The dynamic nature of TBI demands sophisticated methodologies for modeling and predicting cerebral signals to unravel intricate pathophysiology and predict secondary injury mechanisms prior to their occurrence. In this comprehensive scoping review, we focus specifically on multivariate cerebral physiologic signal analysis in the context of multi-modal monitoring (MMM) in TBI, exploring a range of techniques including multivariate statistical time-series models and machine learning algorithms. Conducting a comprehensive search across databases yielded 7 studies for evaluation, encompassing diverse cerebral physiologic signals and parameters from TBI patients. Among these, five studies concentrated on modeling cerebral physiologic signals using statistical time-series models, while the remaining two studies primarily delved into intracranial pressure (ICP) prediction through machine learning models. Autoregressive models were predominantly utilized in the modeling studies. In the context of prediction studies, logistic regression and Gaussian processes (GP) emerged as the predominant choice in both research endeavors, with their performance being evaluated against each other in one study and other models such as random forest, and decision tree in the other study. Notably among these models, random forest model, an ensemble learning approach, demonstrated superior performance across various metrics. Additionally, a notable gap was identified concerning the absence of studies focusing on prediction for multivariate outcomes. This review addresses existing knowledge gaps and sets the stage for future research in advancing cerebral physiologic signal analysis for neurocritical care improvement.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Aprendizaje Automático , Humanos , Lesiones Traumáticas del Encéfalo/fisiopatología , Análisis Multivariante , Encéfalo/fisiopatología , Procesamiento de Señales Asistido por Computador
3.
Physiol Meas ; 45(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38776946

RESUMEN

Objective.Continuous monitoring of cerebrospinal compliance (CC)/cerebrospinal compensatory reserve (CCR) is crucial for timely interventions and preventing more substantial deterioration in the context of acute neural injury, as it enables the early detection of abnormalities in intracranial pressure (ICP). However, to date, the literature on continuous CC/CCR monitoring is scattered and occasionally challenging to consolidate.Approach.We subsequently conducted a systematic scoping review of the human literature to highlight the available continuous CC/CCR monitoring methods.Main results.This systematic review incorporated a total number of 76 studies, covering diverse patient types and focusing on three primary continuous CC or CCR monitoring metrics and methods-Moving Pearson's correlation between ICP pulse amplitude waveform and ICP, referred to as RAP, the Spiegelberg Compliance Monitor, changes in cerebral blood flow velocity with respect to the alternation of ICP measured through transcranial doppler (TCD), changes in centroid metric, high frequency centroid (HFC) or higher harmonics centroid (HHC), and the P2/P1 ratio which are the distinct peaks of ICP pulse wave. The majority of the studies in this review encompassed RAP metric analysis (n= 43), followed by Spiegelberg Compliance Monitor (n= 11), TCD studies (n= 9), studies on the HFC/HHC (n= 5), and studies on the P2/P1 ratio studies (n= 6). These studies predominantly involved acute traumatic neural injury (i.e. Traumatic Brain Injury) patients and those with hydrocephalus. RAP is the most extensively studied of the five focused methods and exhibits diverse applications. However, most papers lack clarification on its clinical applicability, a circumstance that is similarly observed for the other methods.Significance.Future directions involve exploring RAP patterns and identifying characteristics and artifacts, investigating neuroimaging correlations with continuous CC/CCR and integrating machine learning, holding promise for simplifying CC/CCR determination. These approaches should aim to enhance the precision and accuracy of the metric, making it applicable in clinical practice.


Asunto(s)
Presión Intracraneal , Humanos , Monitoreo Fisiológico/métodos , Presión Intracraneal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Circulación Cerebrovascular/fisiología , Adaptabilidad
4.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671733

RESUMEN

Near-infrared spectroscopy (NIRS) regional cerebral oxygen saturation (rSO2)-based cerebrovascular reactivity (CVR) monitoring has enabled entirely non-invasive, continuous monitoring during both acute and long-term phases of care. To date, long-term post-injury CVR has not been properly characterized after acute traumatic neural injury, also known as traumatic brain injury (TBI). This study aims to compare CVR in those recovering from moderate-to-severe TBI with a healthy control group. A total of 101 heathy subjects were recruited for this study, along with 29 TBI patients. In the healthy cohort, the arterial blood pressure variant of the cerebral oxygen index (COx_a) was not statistically different between males and females or in the dominant and non-dominant hemispheres. In the TBI cohort, COx_a was not statistically different between the first and last available follow-up or by the side of cranial surgery. Surprisingly, CVR, as measured by COx_a, was statistically better in those recovering from TBI than those in the healthy cohort. In this prospective cohort study, CVR, as measured by NIRS-based methods, was found to be more active in those recovering from TBI than in the healthy cohort. This study may indicate that in individuals that survive TBI, CVR may be enhanced as a neuroprotective measure.

5.
J Clin Monit Comput ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436898

RESUMEN

PURPOSE: Continuous cerebrovascular reactivity monitoring in both neurocritical and intra-operative care has gained extensive interest in recent years, as it has documented associations with long-term outcomes (in neurocritical care populations) and cognitive outcomes (in operative cohorts). This has sparked further interest into the exploration and evaluation of methods to achieve an optimal cerebrovascular reactivity measure, where the individual patient is exposed to the lowest insult burden of impaired cerebrovascular reactivity. Recent literature has documented, in neural injury populations, the presence of a potential optimal sedation level in neurocritical care, based on the relationship between cerebrovascular reactivity and quantitative depth of sedation (using bispectral index (BIS)) - termed BISopt. The presence of this measure outside of neural injury patients has yet to be proven. METHODS: We explore the relationship between BIS and continuous cerebrovascular reactivity in two cohorts: (A) healthy population undergoing elective spinal surgery under general anesthesia, and (B) healthy volunteer cohort of awake controls. RESULTS: We demonstrate the presence of BISopt in the general anesthesia population (96% of patients), and its absence in awake controls, providing preliminary validation of its existence outside of neural injury populations. Furthermore, we found BIS to be sufficiently separate from overall systemic blood pressure, this indicates that they impact different pathophysiological phenomena to mediate cerebrovascular reactivity. CONCLUSIONS: Findings here carry implications for the adaptation of the individualized physiologic BISopt concept to non-neural injury populations, both within critical care and the operative theater. However, this work is currently exploratory, and future work is required.

6.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474990

RESUMEN

The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting. It focuses on temporally resolved cerebral pressure-flow and oxygen delivery data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volunteers, patients with various conditions, and animal subjects. Methodologies range from traditional statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv. Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees showed promise, especially in ICP prediction. Nonlinear models and multi-input models were prevalent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis, benefiting neurocritical care applications.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Humanos
7.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257592

RESUMEN

The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.


Asunto(s)
Presión Intracraneal , Espectroscopía Infrarroja Corta , Humanos , Estudios Retrospectivos , Proyectos de Investigación , Tecnología
8.
Intensive Care Med Exp ; 11(1): 92, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095819

RESUMEN

BACKGROUND: Optimal cerebral perfusion pressure (CPPopt) has emerged as a promising personalized medicine approach to the management of moderate-to-severe traumatic brain injury (TBI). Though literature demonstrating its association with poor outcomes exists, there is yet to be work done on its association with outcome transition due to a lack of serial outcome data analysis. In this study we investigate the association between various metrics of CPPopt and failure to improve in outcome over time. METHODS: CPPopt was derived using three different cerebrovascular reactivity indices; the pressure reactivity index (PRx), the pulse amplitude index (PAx), and the RAC index. For each index, % times spent with cerebral perfusion pressure (CPP) above and below its CPPopt and upper and lower limits of reactivity were calculated. Patients were dichotomized based on improvement in Glasgow Outcome Scale-Extended (GOSE) scores into Improved vs. Not Improved between 1 and 3 months, 3 and 6 months, and 1- and 6-month post-TBI. Logistic regression analyses were then conducted, adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. RESULTS: This study included a total of 103 patients from the Winnipeg Acute TBI Database. Through Mann-Whitney U testing and logistic regression analysis, it was found that % time spent with CPP below CPPopt was associated with failure to improve in outcome, while % time spent with CPP above CPPopt was generally associated with improvement in outcome. CONCLUSIONS: Our study supports the existing narrative that time spent with CPP below CPPopt results in poorer outcomes. However, it also suggests that time spent above CPPopt may not be associated with worse outcomes and is possibly even associated with improvement in outcome.

9.
Intensive Care Med Exp ; 11(1): 57, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635181

RESUMEN

BACKGROUND: Cerebrovascular reactivity has been identified as a key contributor to secondary injury following traumatic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spectroscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning clustering techniques and multivariate time-series analysis. METHODS: High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregressive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arterial blood pressure (ΔABP) was also examined for similarities. RESULTS: A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through agglomerative hierarchical clustering and principal component analysis, there was higher order clustering between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV. CONCLUSIONS: rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strengthens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring is not feasible.

10.
Neurotrauma Rep ; 4(1): 478-494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636334

RESUMEN

Since its introduction in the 1960s, intracranial pressure (ICP) monitoring has become an indispensable tool in neurocritical care practice and a key component of the management of moderate/severe traumatic brain injury (TBI). The primary utility of ICP monitoring is to guide therapeutic interventions aimed at maintaining physiological ICP and preventing intracranial hypertension. The rationale for such ICP maintenance is to prevent secondary brain injury arising from brain herniation and inadequate cerebral blood flow. There exists a large body of evidence indicating that elevated ICP is associated with mortality and that aggressive ICP control protocols improve outcomes in severe TBI patients. Therefore, current management guidelines recommend a cerebral perfusion pressure (CPP) target range of 60-70 mm Hg and an ICP threshold of >20 or >22 mm Hg, beyond which therapeutic intervention should be initiated. Though our ability to achieve these thresholds has drastically improved over the past decades, there has been little to no change in the mortality and morbidity associated with moderate-severe TBI. This is a result of the "one treatment fits all" dogma of current guideline-based care that fails to take individual phenotype into account. The way forward in moderate-severe TBI care is through the development of continuously derived individualized ICP thresholds. This narrative review covers the topic of ICP monitoring in TBI care, including historical context/achievements, current monitoring technologies and indications, treatment methods, associations with patient outcome and multi-modal cerebral physiology, present controversies surrounding treatment thresholds, and future perspectives on personalized approaches to ICP-directed therapy.

11.
Physiol Meas ; 44(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37336236

RESUMEN

Objective: Cerebral blood vessels maintaining relatively constant cerebral blood flow (CBF) over wide range of systemic arterial blood pressure (ABP) is referred to as cerebral autoregulation (CA). Impairments in CA expose the brain to pressure-passive flow states leading to hypoperfusion and hyperperfusion. Cerebrovascular reactivity (CVR) metrics refer to surrogate metrics of pressure-based CA that evaluate the relationship between slow vasogenic fluctuations in cerebral perfusion pressure/ABP and a surrogate for pulsatile CBF/cerebral blood volume.Approach: We performed a systematically conducted scoping review of all available human literature examining the association between continuous CVR between more than one brain region/channel using the same CVR index.Main Results: In all the included 22 articles, only handful of transcranial doppler (TCD) and near-infrared spectroscopy (NIRS) based metrics were calculated for only two brain regions/channels. These metrics found no difference between left and right sides in healthy volunteer, cardiac surgery, and intracranial hemorrhage patient studies. In contrast, significant differences were reported in endarterectomy, and subarachnoid hemorrhage studies, while varying results were found regarding regional disparity in stroke, traumatic brain injury, and multiple population studies.Significance: Further research is required to evaluate regional disparity using NIRS-based indices and to understand if NIRS-based indices provide better regional disparity information than TCD-based indices.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hemorragia Subaracnoidea , Humanos , Presión Arterial/fisiología , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Ultrasonografía Doppler Transcraneal/métodos
12.
Methods Protoc ; 6(3)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368002

RESUMEN

The ability of cerebral vessels to maintain a fairly constant cerebral blood flow is referred to as cerebral autoregulation (CA). Using near-infrared spectroscopy (NIRS) paired with arterial blood pressure (ABP) monitoring, continuous CA can be assessed non-invasively. Recent advances in NIRS technology can help improve the understanding of continuously assessed CA in humans with high spatial and temporal resolutions. We describe a study protocol for creating a new wearable and portable imaging system that derives CA maps of the entire brain with high sampling rates at each point. The first objective is to evaluate the CA mapping system's performance during various perturbations using a block-trial design in 50 healthy volunteers. The second objective is to explore the impact of age and sex on regional disparities in CA using static recording and perturbation testing in 200 healthy volunteers. Using entirely non-invasive NIRS and ABP systems, we hope to prove the feasibility of deriving CA maps of the entire brain with high spatial and temporal resolutions. The development of this imaging system could potentially revolutionize the way we monitor brain physiology in humans since it would allow for an entirely non-invasive continuous assessment of regional differences in CA and improve our understanding of the impact of the aging process on cerebral vessel function.

13.
Front Physiol ; 14: 1204874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351255

RESUMEN

Background: Burst suppression (BS) is an electroencephalography (EEG) pattern in which there are isoelectric periods interspersed with bursts of cortical activity. Targeting BS through anaesthetic administration is used as a tool in the neuro-intensive care unit but its relationship with cerebral blood flow (CBF) and cerebral autoregulation (CA) is unclear. We performed a systematic scoping review investigating the effect of BS on CBF and CA in animals and humans. Methods: We searched MEDLINE, BIOSIS, EMBASE, SCOPUS and Cochrane library from inception to August 2022. The data that were collected included study population, methods to induce and measure BS, and the effect on CBF and CA. Results: Overall, there were 66 studies that were included in the final results, 41 of which examined animals, 24 of which examined humans, and 1 of which examined both. In almost all the studies, BS was induced using an anaesthetic. In most of the animal and human studies, BS was associated with a decrease in CBF and cerebral metabolism, even if the mean arterial pressure remained constant. The effect on CA during periods of stress (hypercapnia, hypothermia, etc.) was variable. Discussion: BS is associated with a reduction in cerebral metabolic demand and CBF, which may explain its usefulness in patients with brain injury. More evidence is needed to elucidate the connection between BS and CA.

14.
Intensive Care Med Exp ; 11(1): 30, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246179

RESUMEN

BACKGROUND: Although vasopressor and sedative agents are commonly used within the intensive care unit to mediate systemic and cerebral physiology, the full impact such agents have on cerebrovascular reactivity remains unclear. Using a prospectively maintained database of high-resolution critical care and physiology, the time-series relationship between vasopressor/sedative administration, and cerebrovascular reactivity was interrogated. Cerebrovascular reactivity was assessed through intracranial pressure and near infrared spectroscopy measures. Using these derived measures, the relationship between hourly dose of medication and hourly index values could be evaluated. The individual medication dose change and their corresponding physiological response was compared. Given the high number of doses of propofol and norepinephrine, a latent profile analysis was used to identify any underlying demographic or variable relationships. Finally, using time-series methodologies of Granger causality and vector impulse response functions, the relationships between the cerebrovascular reactivity derived variables were compared. RESULTS: From this retrospective observational study of 103 TBI patients, the evaluation between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies was completed. The assessment of the physiology pre/post infusion agent change resulted in similar overall values (Wilcoxon signed-ranked p value > 0.05). Time series methodologies demonstrated that the basic physiological relationships were identical before and after an infusion agent was changed (Granger causality demonstrated the same directional impact in over 95% of the moments, with response function being graphically identical). CONCLUSIONS: This study suggests that overall, there was a limited association between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies including that of cerebrovascular reactivity. Thus, current regimens of administered sedative and vasopressor agents appear to have little to no impact on cerebrovascular reactivity in TBI.

15.
Neurotrauma Rep ; 4(1): 307-317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187506

RESUMEN

Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.

16.
Acta Neurochir (Wien) ; 165(7): 1987-2000, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37067617

RESUMEN

BACKGROUND: Current moderate/severe traumatic brain injury (TBI) guidelines suggest the use of an intracranial pressure (ICP) treatment threshold of 20 mmHg or 22 mmHg. Over the past decade, the use of various cerebral physiology monitoring devices has been incorporated into neurocritical care practice and termed "multimodal monitoring." Such modalities include those that monitor systemic hemodynamics, systemic and brain oxygenation, cerebral blood flow (CBF), cerebral autoregulation, electrophysiology, and cerebral metabolism. Given that the relationship between ICP and outcomes is not yet entirely understood, a comprehensive review of the literature on the associations between ICP thresholds and multimodal monitoring is still needed. METHODS: We conducted a scoping review of the literature for studies that present an objective statistical association between ICP above/below threshold and any multimodal monitoring variable. MEDLINE, BIOSIS, Cochrane library, EMBASE, Global Health, and SCOPUS were searched from inception to July 2022 for relevant articles. Full-length, peer-reviewed, original works with a sample size of ≥50 moderate-severe TBI patients were included in this study. RESULTS: A total of 13 articles were deemed eligible for final inclusion. The included articles were significantly heterogenous in terms of their designs, demographics, and results, making it difficult to draw any definitive conclusions. No literature describing the association between guideline-based ICP thresholds and measures of brain electrophysiology, cerebral metabolism, or direct metrics of CBF was found. CONCLUSION: There is currently little literature that presents objective statistical associations between ICP thresholds and multimodal monitoring physiology. However, overall, the literature indicates that having ICP above guideline based thresholds is associated with increased blood pressure, increased cardiac decoupling, reduced parenchymal brain oxygen tension, and impaired cerebral autoregulation, with no association with CBF velocity within the therapeutic range of ICP. There was insufficient literature to comment on other multimodal monitoring measures.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Presión Intracraneal/fisiología , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Encefálicas/complicaciones , Hemodinámica , Homeostasis/fisiología , Circulación Cerebrovascular/fisiología , Monitoreo Fisiológico/métodos
17.
Bioengineering (Basel) ; 11(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247909

RESUMEN

Regional cerebral oxygen saturation (rSO2), a method of cerebral tissue oxygenation measurement, is recorded using non-invasive near-infrared Spectroscopy (NIRS) devices. A major limitation is that recorded signals often contain artifacts. Manually removing these artifacts is both resource and time consuming. The objective was to evaluate the applicability of using wavelet analysis as an automated method for simple signal loss artifact clearance of rSO2 signals obtained from commercially available devices. A retrospective observational study using existing populations (healthy control (HC), elective spinal surgery patients (SP), and traumatic brain injury patients (TBI)) was conducted. Arterial blood pressure (ABP) and rSO2 data were collected in all patients. Wavelet analysis was determined to be successful in removing simple signal loss artifacts using wavelet coefficients and coherence to detect signal loss artifacts in rSO2 signals. The removal success rates in HC, SP, and TBI populations were 100%, 99.8%, and 99.7%, respectively (though it had limited precision in determining the exact point in time). Thus, wavelet analysis may prove to be useful in a layered approach NIRS signal artifact tool utilizing higher-frequency data; however, future work is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA