Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 350: 141030, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154668

RESUMEN

Corncob (CC) based solar evaporators were employed to desalinize seawater brought from the Vallarta coast in Mexico. The pure CC produced an evaporation-rate and evaporation-efficiency of 0.63 kg m-2 h-1 and 38.4%, respectively, under natural solar light. Later, the CC was coated with carbonized CC (CCCE evaporator) or was coated with graphene (CCGE evaporator). Those evaporators were used for the desalination of seawater and obtained higher evaporation rates of 1.59-1.67 kg m-2 h-1, and higher evaporation efficiencies of 92-94% (under natural solar light). The desalination experiments were repeated under artificial solar light and the evaporation-rates/evaporation-efficiencies slightly decreased to 1.43-1.52 kg m-2 h-1/88-92%. The surface analysis of the evaporators by FTIR, XPS and Raman revealed that the CCGE evaporator had on its surface a lower content of defects and a higher amount of OH groups than the CCCE evaporator. Therefore, the CCGE evaporator had higher evaporation-rates/evaporation-efficiencies in comparison with the CCCE evaporator. Furthermore, we purified water contaminated with three different herbicides (fomesafen, 2-6 dichlorobenzamide and 4-chlorophenol at 30 ppm) by evaporation and using natural solar light. Interestingly, the CCCE and CCGE evaporators also removed the herbicides by physical adsorption with efficiencies of 12-22.5%. Moreover, the CCGE evaporator removed vegetable oil from contaminated water by adsorption and its maximum adsorption capacity was 1.72 g/g. Overall, our results demonstrated that the corncob-based evaporators studied here are a low-cost alternative to obtain clean water under natural solar light and this one was more effective for the desalination of seawater than the artificial sunlight (Xe lamp).


Asunto(s)
Herbicidas , Zea mays , Agua de Mar , Agua , Luz Solar
2.
J Environ Manage ; 345: 118784, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611517

RESUMEN

Magnetic bismuth ferrite (BiFO) microparticles were employed for the first time for the removal of polystyrene (PS) nano/microplastics from the drinking water. BiFO is formed by porous agglomerates with sizes of 5-11 µm, while the PS nano/microparticles have sizes in the range of 70-11000 nm. X-ray diffraction studies demonstrated that the BiFO microparticles are composed of BiFeO3/Bi25FeO40 (the content of Bi25FeO40 is ≈ 8.6%). Drinking water was contaminated with PS nano/microparticles (1 g L-1) and BiFO microparticles were also added to the contaminated water. Later, the mixture of PS-particles + BiFO was irradiated with NIR light (980 nm). Consequently, PS nano/microparticles melted on the BiFO microparticles due to the excessive heating on their surface. At the same time, the NIR (near infrared) light generated oxidizing agents (∙OH and h+), which degraded the by-products formed during the photocatalytic degradation of PS nano/microparticles. Subsequently, the NIR irradiation was stopped, and a Neodymium magnet was utilized to separate the BiFO microparticles from the water. This last procedure also permitted the removal of PS nano/microparticles by physical adsorption. Zeta potential measurements demonstrated that the BiFO surface was positively charged, allowing the removal of the negatively charged PS nano/microparticles by electrostatic attraction. The combination of the photocatalytic process and the physical adsorption permitted a complete removal of PS nano/microparticles after only 90 min as well as a high mineralization of by-products (≈95.5% as confirmed by the total organic carbon measurements). We estimate that ≈23.6% of the PS nano/microparticles were eliminated by photocatalysis and the rest of PS particles (≈76.4%) by physical adsorption. An outstanding adsorption capacity of 195.5 mg g-1 was obtained after the magnetic separation of the BiFO microparticles from the water. Hence, the results of this research demonstrated that using photocatalysis + physical-adsorption is a feasible strategy to quickly remove microplastic contaminants from the water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Poliestirenos , Plásticos , Bismuto , Microplásticos , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
3.
J Environ Manage ; 315: 115204, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35523072

RESUMEN

This investigation reports the photocatalytic performance of the tungsten doped titania (TiO2:W or TW) with and without coating of chlorophyll (Chl) for the removal of the RhB dye from the drinking water. These particles were also supported on recycled plastic bottle caps (Bcap) to form other photocatalytic composites (TW/Bcap and TW + Chl/Bcap). The SEM images demonstrated that the TW particles without Chl had irregular shapes and sizes of 0.8-12 µm. The TW particles coated by the Chl presented shapes of quasi-rounded grains and smaller particle sizes of 0.8-1.8 µm. The photocatalytyic experiments showed that the photocatalyst powders containing Chl removed completely the RhB dye from the water after 2h under UV-VIS light, while the photocatalyst without Chl removed a maximum of 95% of the RhB. Interestingly, the TW/Bcap and TW + Chl/Bcap composites removed 94-100% of the RhB after 2h. Those ones removed such dye by photocatalysis and by physical adsorption at the same time (as confirmed by the absorbance and FTIR measurements), therefore, the removal of RhB was still very high. Scavenger experiments were also achieved and found that the •OH radicals are the main oxidizing species generated by the photocatalysts with and without Chl. The •O2- radicals and holes (h+) were the secondary oxidizing species. The presence of the chlorophyll on the photocatalyst increased in general the light absorption and the photocurrent. Overall, our work demonstrated that making composites with recycled plastic bottle caps is a feasible alternative to remove dyes from contaminated drinking water with high efficiency and low cost.


Asunto(s)
Agua Potable , Catálisis , Clorofila , Colorantes , Plásticos , Rodaminas , Titanio
4.
Sci Total Environ ; 807(Pt 2): 150820, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627879

RESUMEN

Global concern about environmental pollution has increased in recent times due to the cumulative harmful impact on the human health occasioned by the diverse toxic substances released into the environment. Water reduced availability for human consumption and its pollution have been paid so much attention due to their relevance in agricultural and industrial activities. In this context, the advanced oxidation processes for removing contaminants from water, more specifically photocatalytic processes, have displayed their usefulness due to features such as easy application, low-cost, harmless effects and sustainable decontamination efficiency. This timely review is centered on worldwide studies, where efforts aimed at employing recycled materials as supports for purification applications such as the removal of different contaminants (dyes, pharmaceutical contaminants, and heavy metals) dissolved in aqueous environments have been reported. Materials like polyethylene terephthalic (PET), polystyrene (PS), disposal textile fabrics, newspapers, aluminum soda cans, rubber, waste electronic and electric components and used batteries have been employed either as supports for immobilizing catalysts or as photocatalysts. The present work offers a discussion of the ways through which photocatalytic composites have been immobilized or produced, employed characterization techniques, removal efficiencies achieved during photocatalytic degradation and possible degradation mechanism of pollutants; not only the highlights of all these studies are discussed, but also paths for future research works that could help improve the reported results are suggested. These new practical tools stand as novel sustainable strategies for the removal of emerging contaminants reusing waste flexible materials.


Asunto(s)
Electrónica , Agua , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA