Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(14): 5412-5424, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319556

RESUMEN

Two-dimensional (2D) van der Waals (vdW) materials with tunable heterostructures and superior optoelectronic properties have opened a new platform for various applications, e.g., field-effect transistors, ultrasensitive photodetectors and photocatalysts. In this work, an InSe/InSe(Ge) (germanium doped InSe) vdW heterostructure is designed to improve the photoresponse performance of sole InSe in a photoelectrochemical (PEC)-type photodetector. Photoelectrochemical measurements demonstrated that this heterostructure has excellent photoresponse characteristics, including a photocurrent density of 9.8 µA cm-2, a photo-responsivity of 64 µA W-1, and a response time/recovery time of 0.128 s/0.1 s. Moreover, the measurements also revealed the self-powering capability and long-term cycling stability of this heterostructure. The electronic properties of the prepared pure and Ge-doped single crystals unveiled a negative and temperature-independent thermoelectric power and temperature-activated resistivity. The negative character of dominating charge carriers was confirmed by Hall measurements, which corroborated by electrical resistivity revealed a carrier concentration below ∼1015 cm-3 and an electron mobility of ∼500 cm2 V-1 s-1 in Ge-doped crystals. Additionally, the Mott-Schottky model explored the mechanism of charge transfer and enhanced PEC performance. Band bending at the InSe/InSe(Ge)-electrolyte interface benefits the separation and transformation of photogenerated carriers from the heterostructure to electrolyte due to the tunable energy band alignment. These results indicate that the InSe/InSe(Ge) vdW heterostructure is promising for PEC-type photodetectors, which provide a novel way to utilize 2D vdW heterostructures in optoelectronics.

2.
Adv Mater ; 34(12): e2106110, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933395

RESUMEN

2D van der Waals (vdW) materials have been considered as potential building blocks for use in fundamental elements of electronic and optoelectronic devices, such as electrodes, channels, and dielectrics, because of their diverse and remarkable electrical properties. Furthermore, two or more building blocks of different electronic types can be stacked vertically to generate vdW heterostructures with desired electrical behaviors. However, such fundamental approaches cannot directly be applied practically because of issues such as precise alignment/positioning and large-quantity material production. Here, these limitations are overcome and wafer-scale vdW heterostructures are demonstrated by exploiting the lateral and vertical assembly of solution-processed 2D vdW materials. The high exfoliation yield of the molecular intercalation-assisted approach enables the production of micrometer-sized nanosheets in large quantities and its lateral assembly in a wafer-scale via vdW interactions. Subsequently, the laterally assembled vdW thin-films are vertically assembled to demonstrate various electronic device applications, such as transistors and photodetectors. Furthermore, multidimensional vdW heterostructures are demonstrated by integrating 1D carbon nanotubes as a p-type semiconductor to fabricate p-n diodes and complementary logic gates. Finally, electronic devices are fabricated via inkjet printing as a lithography-free manner based on the stable nanomaterial dispersions.

3.
ACS Nano ; 15(6): 10659-10667, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34101433

RESUMEN

Two-dimensional transitional metal halides have recently attracted significant attention due to their thickness-dependent and electrostatically tunable magnetic properties. However, this class of materials is highly reactive chemically, which leads to irreversible degradation and catastrophic dissolution within seconds in ambient conditions, severely limiting subsequent characterization, processing, and applications. Here, we impart long-term ambient stability to the prototypical transition metal halide CrI3 by assembling a noncovalent organic buffer layer, perylenetetracarboxylic dianhydride (PTCDA), which templates subsequent atomic layer deposition (ALD) of alumina. X-ray photoelectron spectroscopy demonstrates the necessity of the noncovalent organic buffer layer since the CrI3 undergoes deleterious surface reactions with the ALD precursors in the absence of PTCDA. This organic-inorganic encapsulation scheme preserves the long-range magnetic ordering in CrI3 down to the monolayer limit as confirmed by magneto-optical Kerr effect measurements. Furthermore, we demonstrate field-effect transistors, photodetectors, and optothermal measurements of CrI3 thermal conductivity in ambient conditions.

4.
ACS Appl Mater Interfaces ; 12(31): 35222-35231, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32633940

RESUMEN

The V-VI binary chalcogenide, Sb2Se3, has attracted considerable attention for its applications in thin film optoelectronic devices because of its unique 1D structure and remarkable optoelectronic properties. Herein, we report an Sb2Se3 thin film epitaxially grown on a flexible mica substrate through a relatively weak (van der Waals) interaction by vapor transport deposition. The epitaxial Sb2Se3 thin films exhibit a single (120) out-of-plane orientation and a 0.25° full width at half-maximum of (120) rocking curve in X-ray diffraction, confirming the high crystallinity of the epitaxial films. The Sb2Se3(120) plane is epitaxially aligned on mica(001) surface with the in-plane relationship of Sb2Se3[2̅10]//mica[010] and Sb2Se3[001]//mica[100]. Compared to the photodetector made of a nonepitaxial Sb2Se3 film, the photocurrent of the epitaxial Sb2Se3 film photodetector is almost doubled. Furthermore, because of the flexibility and high sensitivity of the epitaxial Sb2Se3 film photodetector on mica, it has been successfully employed to detect the heart rate of a person. These encouraging results will facilitate the development of epitaxial Sb2Se3 film-based devices and potential applications in wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...