Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785503

RESUMEN

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

2.
Cancers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174010

RESUMEN

Euterpe oleracea (açaí) fruit has approximately 15% pulp, which is partly edible and commercialized, and 85% seeds. Although açaí seeds are rich in catechins-polyphenolic compounds with antioxidant, anti-inflammatory, and antitumor effects-almost 935,000 tons/year of seeds are discarded as industrial waste. This work evaluated the antitumor properties of E. oleracea in vitro and in vivo in a solid Ehrlich tumor in mice. The seed extract presented 86.26 ± 0.189 mg of catechin/g of extract. The palm and pulp extracts did not exhibit in vitro antitumor activity, while the fruit and seed extracts showed cytotoxic effects on the LNCaP prostate cancer cell line, inducing mitochondrial and nuclear alterations. Oral treatments were performed daily at 100, 200, and 400 mg/kg of E. oleracea seed extract. The tumor development and histology were evaluated, along with immunological and toxicological parameters. Treatment at 400 mg/kg reduced the tumor size, nuclear pleomorphism, and mitosis figures, increasing tumor necrosis. Treated groups showed cellularity of lymphoid organs comparable to the untreated group, suggesting less infiltration in the lymph node and spleen and preservation of the bone marrow. The highest doses reduced IL-6 and induced IFN-γ, suggesting antitumor and immunomodulatory effects. Thus, açaí seeds can be an important source of compounds with antitumor and immunoprotective properties.

3.
Drug Chem Toxicol ; 46(4): 665-676, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35635136

RESUMEN

Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.


Asunto(s)
Flavonoides , Neoplasias , Masculino , Humanos , Flavonoides/farmacología , Flavonoides/química , Simulación del Acoplamiento Molecular , Células HeLa , Membrana Celular , Supervivencia Celular , Línea Celular Tumoral
4.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422571

RESUMEN

Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.

5.
Toxicol In Vitro ; 62: 104679, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31676337

RESUMEN

Ruthenium complexes are being considered as novel chemotherapeutic alternatives for cancer treatment. In our study, we assessed the antitumoral activities of novel ruthenium complexes coupled to the amino acids proline (RuPro) and threonine (RuThr) in prostate tumor cell lines (DU145) and breast (MCF7), and normal cell lines of the lung fibroblast (GM07492A). Our results revealed that the EC50 of the complexes for DU145 and MCF7 was two times lower than that GM07492A. Moreover, RuPro and RuThr were not able to induce significant genomic instability, cell cycle arrest or cell death in GM07492A, but could induce DNA damage, arrest in G2/M and apoptosis in DU145 and MCF7. Furthermore, BAX, TP53 and ATM were found to be upregulated in DU145 and MCF7 treated with RuPro and RuThr, in which, a higher ASCT2 gene expression was also observed. Using molecular docking, RuPro and RuThr interact with ASCT2, suggesting that this transporter might have a pivotal role in the execution of their activities. Hence, our results with RuPro and RuThr are capable of selectively inducing genetic damage, cell cycle arrest and apoptosis in DU145 and MCF7. We suggest that the selective action of the RuPro and RuThr complexes is related to the higher expression of ASCT2 in the tumor cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quelantes/farmacología , Inestabilidad Genómica/efectos de los fármacos , Prolina/química , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Rutenio/farmacología , Treonina/química , Sistema de Transporte de Aminoácidos ASC/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Ligandos , Masculino , Antígenos de Histocompatibilidad Menor/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/patología
6.
Mediators Inflamm ; 2019: 8346930, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827382

RESUMEN

Dendritic cells (DCs) are the most efficient antigen-presenting cells and link the innate immune sensing of the environment to the initiation of adaptive immune responses, which may be directed to either acceptance or elimination of the recognized antigen. In cancer patients, though DCs would be expected to present tumor antigens to T lymphocytes and induce tumor-eliminating responses, this is frequently not the case. The complex tumor microenvironment subverts the immune response, blocks some effector mechanisms, and drives others to support tumor growth. Chronic inflammation in a tumor microenvironment is believed to contribute to the induction of such regulatory/tolerogenic response. Among the various mediators of the modulatory switch in chronic inflammation is the "antidanger signal" chaperone, heat shock protein 27 (Hsp27), that has been described, interestingly, to be associated with cell migration and drug resistance of breast cancer cells. Thus, here, we investigated the expression of Hsp27 during the differentiation of monocyte-derived DCs (Mo-DCs) from healthy donors and breast cancer patients and evaluated their surface phenotype, cytokine secretion pattern, and lymphostimulatory activity. Surface phenotype and lymphocyte proliferation were evaluated by flow cytometry, interferon- (IFN-) γ, and interleukin- (IL-) 10 secretion, by ELISA and Hsp27 expression, by quantitative polymerase chain reaction (qPCR). Mo-DCs from cancer patients presented decreased expression of DC maturation markers, decreased ability to induce allogeneic lymphocyte proliferation, and increased IL-10 secretion. In coculture with breast cancer cell lines, healthy donors' Mo-DCs showed phenotype changes similar to those found in patients' cells. Interestingly, patients' monocytes expressed less GM-CSF and IL-4 receptors than healthy donors' monocytes and Hsp27 expression was significantly higher in patients' Mo-DCs (and in tumor samples). Both phenomena could contribute to the phenotypic bias of breast cancer patients' Mo-DCs and might prove potential targets for the development of new immunotherapeutic approaches for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Dendríticas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Monocitos/metabolismo , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Reacción en Cadena de la Polimerasa
7.
Molecules ; 24(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557835

RESUMEN

Pain is recognized as one of the main symptoms in knee osteoarthritis and is the main reason why patients seek medical attention. Scoparia dulcis has been popularly used to relieve discomfort caused by various painful conditions. The objective of the study is to evaluate the analgesic and anti-inflammatory effect of the crude extract of S. dulcis, in an experimental model of osteoarthritis. The experiment was performed with Wistar rats divided into 4 groups with 5 animals each: healthy, saline, crude extract, and meloxicam groups. Knee osteoarthritis was induced by intra-articular injection of sodium mono-iodoacetate. First, clinical parameters of pain were assessed at days 0, 5, 10, 15, and 20 after induction. Second, the potential cyclooxygenase inhibition was evaluated, and the cytokines of the synovial fluid were quantified. An in silico test and Molecular Docking tests were performed. A histopathological evaluation was made on articular cartilage with safranin O staining. The results showed that a 15-day treatment with crude extract reduced edema, spontaneous pain, peripheral nociceptive activity, and proinflammatory cytokines in the synovial fluid. The highest inhibition of cyclooxygenase 2 in the crude extract occurred at 50 µg/mL. The crude extract of S. dulcis presents therapeutic potential for the treatment of osteoarthritis due to its anti-inflammatory and anti-nociceptive action.


Asunto(s)
Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Extractos Vegetales/farmacología , Scoparia/química , Animales , Biomarcadores , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Ratones , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/metabolismo , Extractos Vegetales/química , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Espectrometría de Masa por Ionización de Electrospray
8.
Artículo en Inglés | MEDLINE | ID: mdl-30046335

RESUMEN

The immunological and the anti-Leishmania amazonensis activity of babassu-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles was evaluated. The anti-Leishmania activity was evaluated against promastigotes or amastigotes forms, in Balb/c macrophages. The size of the microparticles ranged from 3 to 6.4 µm, with a zeta potential of -25 mV and encapsulation efficiency of 48%. The anti-Leishmania activity of the PLGA microparticles loaded with the aqueous extract of babassu mesocarp (MMP) (IC50) was 10-fold higher than that free extract (Meso). MMP exhibited overall bioavailability and was very effective in eliminating intracellular parasites. MMP also reduced ex vivo parasite infectivity probably by the increased production of nitric oxide, hydrogen peroxide, and TNF-α indicating the activation of M1 macrophages. The overexpression of TNF-α did not impair cell viability, suggesting antiapoptotic effects of MMP. In conclusion, babassu-loaded microparticles could be useful for drug targeting in the treatment of leishmaniasis, due to the immunomodulatory effect on macrophage polarization and the increased efficacy as an anti-Leishmania product after the microencapsulation. These findings are of great relevance since the development of new drugs for the treatment of neglected diseases is desirable, mainly if we consider the high morbidity and mortality rates of leishmaniasis worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...