Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6703-6717, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498309

RESUMEN

Graphene doped with different transition metals has been recently proposed to adsorb CO2 and help reduce the greenhouse effect. Iron-doped graphene is one of the most promising candidates for this task, but there is still a lack of full understanding of the adsorption mechanism. In this work, we analyze the electronic structure, geometry, and charge redistribution during adsorption of CO2 molecules by single vacancy iron-doped graphene by DFT calculations using the general gradient approximation of Perdew, Burke, and Ernzernhof functional (PBE) and the van der Waals density functional (vdW). To understand the impact of the pyridinic-N coordination of the iron atom, we gradually replaced the neighboring carbon atoms by nitrogen atoms. The analysis indicates that chemisorption and physisorption occur when the molecule is adsorbed in the side-on and end-on orientation, respectively. Adsorption is stronger when pyridinic-N coordination increases, and the vdW functional describes the chemical interactions and adsorption energy differently in relation to PBE without significant structural changes. The development of the chemical interactions with the change of coordination in the system is further investigated in this work with crystal overlap Hamilton population (COHP) analysis.

2.
J Phys Chem A ; 127(51): 10828-10837, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38100036

RESUMEN

The comparison between electrical transport in CnH2n+2S2 alkane and CnHn+2S2 alkene (n = 4, 6, 8, 10) is studied by using a generalized Breit-Wigner approach and considering coherent transport mechanisms and eventual changes in the state of charge (i.e., cotunneling processes) for both molecules. In general, the conductance of alkanes tends to be smaller than that of similar-sized alkenes. However, cotunneling processes have an important participation in the overall transport in the case of alkanes but not for the alkene family. The progressive changes in both the eigenenergies of the relevant frontier molecular orbitals of the charged species and their spatial localization play decisive roles in the observed differences. While the molecular orbitals of the charged species of the conjugated molecules are hardly affected by the applied voltage, their saturated counterparts are quite sensitive to the external field. With this, successive avoided-crossing events between the molecular orbitals of the single-charged alkane molecules can lead to the appearance of nonballistic conduction channels that make no negligible contributions to the molecular transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...