Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 48(6): 1260-1269, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31613315

RESUMEN

Knowledge of dispersal and spatial dynamics of pest populations is fundamental for implementation of integrated pest management and integrated resistance management. This study evaluated 1) the effectiveness of egg white albumin protein to mark larvae and adults of two polyphagous and highly mobile pests, Spodoptera frugiperda (J.E. Smith) (fall armyworm) and Helicoverpa zea (Boddie) (corn earworm) (Lepidoptera: Noctuidae), and 2) the sensitivity of polyvinylidene difluoride membrane (dot blot) in detecting albumin on marked insects. Laboratory and field experiments tested egg albumin as a protein marker, which was detected using two enzyme-linked immunosorbent assay (ELISA), microplate, and dot blot. In the laboratory, 100% of the moths sprayed with 20% egg white solution acquired the albumin marker, which was detected through the last time point tested (5 d) after application. Egg albumin was not effective at long-term marking of larvae, detected only prior the molting to the next instar. Albumin application in field cages resulted in a high percentage of moths detected as marked at 24 h and 5 d for both species. Egg albumin applied in the open field resulted in 15% of the recaptured corn earworm moths marked with most of them collected 150 m from the application area, although some were captured as far as 1,600 m within approximately 6 d after adult emergence. The results indicated egg albumin is a suitable marker to study the dispersion of fall armyworm and corn earworm in the agroecosystem and dot blot was as effective to detect egg albumin as was indirect ELISA.


Asunto(s)
Mariposas Nocturnas , Albúminas , Animales , Larva , Spodoptera , Zea mays
2.
Gene ; 553(1): 7-16, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25264343

RESUMEN

α-Amylases are common enzymes responsible for hydrolyzing starch. Insect-pests, whose larvae develop in seeds, rely obligatorily on α-amylase activity to digest starch, as their major food source. Considering the relevance of insect α-amylases and the natural α-amylase inhibitors present in seeds to protect from insect damage, we report here the molecular cloning and nucleotide sequence of the full-length AmyHha cDNA of the coffee berry borer, Hypothenemus hampei, a major insect-pest of coffee crops. The AmyHha sequence has 1879 bp, containing a 1458 bp open reading frame, which encodes a predicted protein with 485 amino acid residues, with a predicted molecular mass of 51.2 kDa. The deduced protein showed 55-79% identity to other insect α-amylases, including Anthonomus grandis, Ips typographus and Sitophilus oryzae α-amylases. In depth analysis revealed that the highly conserved three amino acid residues (Asp184, Glu220, and Asp285), which compose the catalytic site are also presented in AmyHha amylase. The AmyHha gene seems to be a single copy in the haploid genome and AmyHha transcription levels were found higher in L2 larvae and adult insects, both corresponding to major feeding phases. Modeling of the AmyHha predicted protein uncovered striking structural similarities to the Tenebrio molitor α-amylase also displaying the same amino acid residues involved in enzyme catalysis (Asp184, Glu220 and Asp285). Since AmyHha gene was mostly transcribed in the intestinal tract of H. hampei larvae, the cognate α-amylase could be considered a high valuable target to coffee bean insect control by biotechnological strategies.


Asunto(s)
Escarabajos/fisiología , ADN Complementario/genética , Conducta Alimentaria , alfa-Amilasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Escarabajos/clasificación , Escarabajos/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido , alfa-Amilasas/química
3.
Bull Entomol Res ; 98(6): 575-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18590601

RESUMEN

The biochemical properties of the digestive alpha-amylase from Tecia solanivora larvae, an important and invasive insect pest of potato (Solanum tuberosum), were studied. This insect has three major digestive alpha-amylases with isoelectric points 5.30, 5.70 and 5.98, respectively, which were separated using native and isoelectric focusing gels. The alpha-amylase activity has an optimum pH between 7.0 and 10.0 with a peak at pH 9.0. The enzymes are stable when heated to 50 degrees C and were inhibited by proteinaceous inhibitors from Phaseolus coccineus (70% inhibition) and P. vulgaris cv. Radical (87% inhibition) at pH 6.0. The inhibitors present in an amaranth hybrid inhibited 80% of the activity at pH 9.0. The results show that the alpha-amylase inhibitor from amaranth seeds may be a better candidate to make genetically-modified potatoes resistant to this insect than inhibitors from common bean seeds.


Asunto(s)
Inhibidores Enzimáticos/química , Mariposas Nocturnas/enzimología , Proteínas de Plantas/química , alfa-Amilasas/química , Animales , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Larva/enzimología , Mariposas Nocturnas/crecimiento & desarrollo , Temperatura , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/fisiología
4.
Comp Biochem Physiol B Biochem Mol Biol ; 126(3): 425-33, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11007185

RESUMEN

A combination of ion-exchange chromatography, preparative electrophoresis and gel filtration chromatography allowed a 1209-fold purification of one of the two major digestive alpha-amylases from larvae of the larger grain borer, Prostephanus truncatus Horn. The purified enzyme showed a molecular mass of 60.2 kDa, an isoelectric point of 4.7 and an optimal pH for activity of 6.0. The enzyme was heat labile and it was recognized by proteinaceous inhibitors from amaranth seeds (Amaranthus hypochondriacus), whereas extracts from maize (Zea mays) and tepary bean (Phaseolus acutifolius) produced very low inhibition. When the enzyme was measured at different stages of development, maximal activity was found in the second instar larvae. Activity drastically decreased to a very low level during the pupae stage and increased again at the adult stage. A zymogram of the different developmental stages showed two main bands of alpha-amylase activity, which almost disappeared at the pupae stage to increase again during the adult stage, revealing a new, smaller band. This new band may be required for a better adaptation of the adult insect to its new environment.


Asunto(s)
Amilasas/metabolismo , Cuernos/enzimología , Mariposas Nocturnas/enzimología , Animales , Proteínas de Insectos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...