Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thromb Haemost ; 121(11): 1541-1553, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33677828

RESUMEN

In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.


Asunto(s)
Enfermedades de la Aorta/genética , Aterosclerosis/genética , Mosaicismo , Polimorfismo de Nucleótido Simple , Animales , Aorta/patología , Enfermedades de la Aorta/patología , Aterosclerosis/patología , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Fenotipo , RNA-Seq , Secuenciación del Exoma
2.
Open Biol ; 10(6): 200050, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32543350

RESUMEN

Disruption of the enzymatic activities of the transcription factor TFIIH by the small molecules Triptolide (TPL) or THZ1 could be used against cancer. Here, we used the MCF10A-ErSrc oncogenesis model to compare the effect of TFIIH inhibitors between transformed cells and their progenitors. We report that tumour cells exhibited highly increased sensitivity to TPL or THZ1 and that the combination of both had a synergic effect. TPL affects the interaction between XPB and p52, causing a reduction in the levels of XPB, p52 and p8, but not other TFIIH subunits. RNA-Seq and RNAPII-ChIP-Seq experiments showed that although the levels of many transcripts were reduced, the levels of a significant number were increased after TPL treatment, with maintained or increased RNAPII promoter occupancy. A significant number of these genes encode for factors that have been related to tumour growth and metastasis, suggesting that transformed cells might rapidly develop resistance to TPL/THZ inhibitors. Some of these genes were also overexpressed in response to THZ1, of which depletion enhances the toxicity of TPL, and are possible new targets against cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Diterpenos/farmacología , Fenantrenos/farmacología , Fenilendiaminas/farmacología , Pirimidinas/farmacología , Factor de Transcripción TFIIH/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Compuestos Epoxi/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Modelos Biológicos , Simulación de Dinámica Molecular , Análisis de Secuencia de ARN
3.
BMC Med Genomics ; 8: 7, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25881171

RESUMEN

BACKGROUND: Atherosclerosis severity-independent alterations in DNA methylation, a reversible and highly regulated DNA modification, have been detected in aortic atheromas, thus supporting the hypothesis that epigenetic mechanisms participate in the pathogenesis of atherosclerosis. One yet unaddressed issue is whether the progression of atherosclerosis is associated with an increase in DNA methylation drift in the vascular tissue. The purpose of the study was to identify CpG methylation profiles that vary with the progression of atherosclerosis in the human aorta. METHODS: We interrogated a set of donor-matched atherosclerotic and normal aortic samples ranging from histological grade III to VII, with a high-density (>450,000 CpG sites) DNA methylation microarray. RESULTS: We detected a correlation between histological grade and intra-pair differential methylation for 1,985 autosomal CpGs, the vast majority of which drifted towards hypermethylation with lesion progression. The identified CpG loci map to genes that are regulated by known critical transcription factors involved in atherosclerosis and participate in inflammatory and immune responses. Functional relevance was corroborated by crossing the DNA methylation profiles with expression data obtained in the same human aorta sample set, by a transcriptome-wide analysis of murine atherosclerotic aortas and from available public databases. CONCLUSIONS: Our work identifies for the first time atherosclerosis progression-specific DNA methylation profiles in the vascular tissue. These findings provide potential novel markers of lesion severity and targets to counteract the progression of the atheroma.


Asunto(s)
Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Metilación de ADN , Animales , Análisis por Conglomerados , Islas de CpG , Bases de Datos Genéticas , Progresión de la Enfermedad , Epigénesis Genética , Humanos , Sistema Inmunológico , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Placa Aterosclerótica/patología , Factores de Transcripción/metabolismo
4.
J Plant Res ; 125(5): 679-92, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22438063

RESUMEN

Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have central roles in cell proliferation, growth and development. In animals, PcG and trxG proteins form higher order protein complexes that contain SET domain proteins with histone methyltransferase activity, and are responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. However, whether H3K4 methyltransferase complexes exist in Arabidopsis thaliana remains unknown. Here, we make use of the yeast two-hybrid system and the bimolecular fluorescence complementation assay to provide evidence for the self-association of the Arabidopsis thaliana SET-domain-containing protein SET DOMAIN GROUP 26 (SDG26), also known as ABSENT, SMALL, OR HOMEOTIC DISCS 1 HOMOLOG 1 (ASHH1). In addition, we show that the ASHH1 protein associates with SET-domain-containing sequences from two distinct histone lysine methyltransferases, the ARABIDOPSIS HOMOLOG OF TRITHORAX-1 (ATX1) and ASHH2 proteins. Furthermore, after screening a cDNA library we found that ASHH1 interacts with two proteins from the heat shock protein 40 kDa (Hsp40/DnaJ) superfamily, thus connecting the epigenetic network with a system sensing external cues. Our findings suggest that trxG complexes in Arabidopsis thaliana could involve different sets of histone lysine methyltransferases, and that these complexes may be engaged in multiple developmental processes in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , N-Metiltransferasa de Histona-Lisina/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...