Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(25): 17448-17460, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38813124

RESUMEN

Diabetes mellitus, a complex metabolic disorder, presents a growing global health challenge. In 2021, there were 529 million diabetics worldwide. At the super-regional level, Oceania, the Middle East, and North Africa had the highest age-standardized rates. The majority of cases of diabetes in 2021 (>90.0%) were type 2 diabetes, which is largely indicative of the prevalence of diabetes in general, particularly in older adults (K. L. Ong, et al., Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021, Lancet, 2023, 402(10397), 203-234). Nowadays, slowing the progression of diabetic complications is the only effective way to manage diabetes with the available therapeutic options. However, novel biomarkers and treatments are urgently needed to control cytokine secretion, advanced glycation end products (AGEs) production, vascular inflammatory effects, and cellular death. Emerging research has highlighted the intricate interplay between reactive oxygen species (ROS) and protein aggregation in the pathogenesis of diabetes. In this scenario, the main aim of this paper is to provide a comprehensive review of the current understanding of the molecular mechanisms underlying ROS-induced cellular damage and protein aggregation, specifically focusing on their contribution to diabetes development. The role of ROS as key mediators of oxidative stress in diabetes is discussed, emphasizing their impact on cellular components and signaling. Additionally, the involvement of protein aggregation in impairing cellular function and insulin signaling is explored. The synergistic effects of ROS and protein aggregation in promoting ß-cell dysfunction and insulin resistance are examined, shedding light on potential targets for therapeutic intervention.

2.
Dalton Trans ; 53(17): 7561-7570, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38606466

RESUMEN

This work focuses on the relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II) complexes of histatin 5 and the products of its hydrolysis: its N-terminal fragment (histatin 5-8) and C-terminal fragment (histatin 8). Cu(II) coordinates in an albumin-like binding mode and Zn(II) binds to up to 3 His imidazoles. The antimicrobial activity of histatins and their metal complexes (i) strongly depends on pH - they are more active at pH 5.4 than at 7.4; (ii) the complexes and ligands alone are more effective in eradicating Gram-positive bacteria than the Gram-negative ones, and (iii) Zn(II) coordination is able to change the structure of the N-terminal region of histatin 5 (histatin 5-8) and moderately increase all of the studied histatins' antimicrobial potency.


Asunto(s)
Complejos de Coordinación , Cobre , Histatinas , Pruebas de Sensibilidad Microbiana , Zinc , Histatinas/química , Histatinas/farmacología , Hidrólisis , Concentración de Iones de Hidrógeno , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Cobre/química , Cobre/farmacología , Zinc/química , Zinc/farmacología , Bacterias Grampositivas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bacterias Gramnegativas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química
3.
Dalton Trans ; 53(15): 6676-6689, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38526845

RESUMEN

Recently, we have studied the coordination chemistry of the Cu(II)-histidine-rich C-terminal tail (HRCT) complex of the mycobacterial GroEL1 protein. The structure of this domain differs significantly compared to the well-known methionine-glycine-rich GroEL chaperonin - it was predicted that mycobacterial GroEL1 could play a significant role in the metal homeostasis of Mycobacteria, especially copper. However, we found that this particular domain's pattern also repeats in a number of Ni(II)-binding proteins. Here, we present the studies concerning the properties of GroEL1 HRCT as a ligand for Ni(II) ions. For this purpose, we chose eight model peptides: L1 - Ac-DHDHHHGHAH, L2 - Ac-DKPAKAEDHDHHHGHAH, and 6 mutants of the latter in the pH range of 2-11. We examined the stoichiometry, stability, and spectroscopic features of copper complexes. We noticed that similar to the Cu(II)-complex, the presence of a Lys5 residue significantly increases the stability of the system. The impact of His mutations was also examined and carefully studied using NMR spectroscopy. His9 and His13 are the crucial residues for Ni(II) binding, whereas His12 has minimal relevance in complex formation.


Asunto(s)
Histidina , Mycobacterium , Histidina/química , Cobre/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Mutación , Mycobacterium/metabolismo
4.
Inorg Chem ; 62(45): 18425-18439, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37909295

RESUMEN

The rapid spread of antibiotic-resistant bacteria continuously raises concerns about the future ineffectiveness of current antimicrobial treatments against infectious diseases. To address this problem, new therapeutic strategies and antimicrobial drugs with unique modes of action are urgently needed. Inhibition of metalloproteases, bacterial virulence factors, is a promising target for the development of antibacterial treatments. In this study, the interaction among Zn(II), Cu(II), and the metal-binding domains of two metalloproteases, AprA (Pseudomonas aureginosa) and CpaA (Acinetobacter baumanii), was investigated. The objective was to determine the coordination sphere of Zn(II) with a peptide model of two zinc-dependent metalloproteases. Additionally, the study explored the formation of Cu(II) complexes with the domains, as Cu(II) has been shown to inhibit metalloproteases. The third aim was to understand the role of nonbinding amino acids in stabilizing the metal complexes formed by these proteases. This work identified specific coordination patterns (HExxHxxxxxH) for both Zn(II) and Cu(II) complexes, with AprA and CpaA exhibiting a higher affinity for Cu(II) compared to Zn(II). The study also found that the CpaA domain has greater stability for both Zn(II) and Cu(II) complexes compared to AprA. The nonbinding amino acids of CpaA surrounding the metal ion contribute to the increased thermodynamic stability of the metal-peptide complex through various intramolecular interactions. These interactions can also influence the secondary structures of the peptides. The presence of certain amino acids, such as tyrosine, arginine, and glutamic acid, and their interactions contribute to the stability and, only in the case of Cu(II) complexes, the formation of a rare protein structure called a left-handed polyproline II helix (PPII), which is known to play a role in the stability and function of various proteins. These findings provide valuable insights into the coordination chemistry of bacterial metalloproteases and expand our understanding of potential mechanisms for inhibiting these enzymes.


Asunto(s)
Antiinfecciosos , Complejos de Coordinación , Cobre/química , Zinc/química , Dominio Catalítico , Péptidos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Aminoácidos , Aminas , Bacterias/metabolismo , Metaloproteasas/metabolismo
5.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764405

RESUMEN

Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and the body's ability to neutralize them. ROS are reactive molecules generated during cellular metabolism and play a crucial role in normal physiological processes. However, excessive ROS production can lead to oxidative damage, contributing to various diseases and aging. This study is focused on rosmarinic acid (RA), a hydroxycinnamic acid (HCA) derivative well known for its antioxidant activity. In addition, RA has also demonstrated prooxidant behavior under specific conditions involving high concentrations of transition metal ions such as iron and copper, high pH, and the presence of oxygen. In this study, we aim to clarify the underlying mechanisms and factors governing the antioxidant and prooxidant activities of RA, and to compare them with other HCA derivatives. UV-Vis, NMR, and EPR techniques were used to explore copper(II)'s binding ability of RA, caffeic acid, and p-coumaric acid. At the same time, UV-Vis and NMR methods were exploited to evaluate the polyphenols' free radical scavenging abilities towards ROS generated by the ascorbic acid-copper(II) system. All the data indicate that RA is the most effective polyphenol both in copper binding abilities and ROS protection.


Asunto(s)
Cobre , Imagen por Resonancia Magnética , Especies Reactivas de Oxígeno , Antioxidantes/farmacología , Polifenoles/farmacología , Ácido Rosmarínico
6.
Inorg Chem ; 62(34): 14103-14115, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37582221

RESUMEN

Proteolytic degradation of semenogelins, the most abundant proteins from human semen, results in the formation of 26- and 29-amino acid peptides (SgIIA and SgI-29, respectively), which share a common 15 amino acid fragment (Sg-15). All three ligands are effective Zn(II) and Cu(II) binders; in solution, a variety of differently metalated species exist in equilibrium, with the [NH2, 3Nim] donor set prevailing at physiological pH in the case of both metals. For the first time, the Cu(II)-induced antimicrobial activity of Sg-15 against Enterococcus faecalis is shown. In the case of the two native semenogelin fragment metal complexes, the strong local positive charge in the metal-bound HH motif correlates well with their antimicrobial activity. A careful analysis of semenogelins' metal coordination behavior reveals two facts: (i) The histamine-like Cu(II) binding mode of SgI-29 strongly increases the stability of such a complex below pH 6 (with respect to the non-histamine-like binding of SgIIA), while in the case of the SgI-29 Zn(II)-histamine-like species, the stability enhancement is less pronounced. (ii) The HH sequence is a more tempting site for Cu(II) ions than the HXH one.


Asunto(s)
Antiinfecciosos , Enterococcus faecalis , Humanos , Cobre/química , Química Bioinorgánica , Zinc/química
7.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513339

RESUMEN

Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo , Micronutrientes , Química Bioinorgánica , Metales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Vitaminas , Iones/metabolismo
8.
Inorg Chem ; 62(18): 6893-6908, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092705

RESUMEN

The mycobacterial histidine-rich GroEL1 protein differs significantly compared to the well-known methionine/glycine-rich GroEL chaperonin. It was predicted that mycobacterial GroEL1 can play a significant role in the metal homeostasis of Mycobacteria but not, as its analogue, in protein folding. In this paper, we present the properties of the GroEL1 His-rich C-terminus as a ligand for Cu(II) ions. We studied the stoichiometry, stability, and spectroscopic features of copper complexes of the eight model peptides: L1─Ac-DHDHHHGHAH, L2─Ac-DKPAKAEDHDHHHGHAH, and six mutants of L2 in the pH range of 2-11. We revealed the impact of adjacent residues to the His-rich fragment on the complex stability: the presence of Lys and Asp residues significantly increases the stability of the system. The impact of His mutations was also examined: surprisingly, the exchange of each single His to the Gln residue did not disrupt the ability of the ligand to provide three binding sites for Cu(II) ions. Despite the most possible preference of the Cu(II) ion for the His9-His13 residues (Ac-DKPAKAEDHDHHH-) of the model peptide, especially the His11 residue, the study shows that there is not only one possible binding mode for Cu(II). The significance of this phenomenon is very important for the GroEL1 function─if the single mutation occurs naturally, the protein would be still able to interact with the metal ion.


Asunto(s)
Cobre , Histidina , Histidina/química , Cobre/química , Mutación Puntual , Ligandos , Péptidos/química , Iones
9.
Biomolecules ; 13(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36830656

RESUMEN

α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Cobre/química , Enfermedad de Parkinson/metabolismo , Péptidos/metabolismo , Oxidación-Reducción
10.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768823

RESUMEN

Galantamine is a natural alkaloid extracted from the Amaryllidaceae plants and is used as the active ingredient of a drug approved for the treatment of the early stages of Alzheimer's disease. It mainly acts as an acetylcholinesterase (AChE) inhibitor, increasing concentrations of the acetylcholine neurotransmitter. Recent cellular studies have also shown the ability of galantamine to protect SH-SY5Y cell lines against amyloid-ß (Aß)-induced toxicity. Such investigations have supported and validated further in-depth studies for understanding the chemical and molecular features associated with galantamine-protective abilities. In addition to galantamine, other natural alkaloids are known to possess AChE inhibitory activity; among them lycorine has been extensively investigated for its antibacterial, anti-inflammatory and antitumoral activities as well. Despite its interesting biological properties, lycorine's neuroprotective functions against Aß-induced damages have not been explored so far. In this research study, the ability of galantamine and lycorine to suppress Aß-induced in vitro neuronal toxicity was evaluated by investigating the chemical interactions of the two alkaloids with Aß peptide. A multi-technique spectroscopic analysis and cellular cytotoxicity assays were applied to obtain new insights on these molecular associations. The comparison between the behaviors exhibited by the two alkaloids indicates that both compounds possess analogue abilities to interact with the amyloidogenic peptide and protect cells.


Asunto(s)
Alcaloides , Neuroblastoma , Humanos , Acetilcolinesterasa/metabolismo , Alcaloides/farmacología , Péptidos beta-Amiloides , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Galantamina/farmacología , Galantamina/química , Neuroblastoma/metabolismo
11.
Dalton Trans ; 50(36): 12635-12647, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545874

RESUMEN

HypB is one of the chaperones required for proper nickel insertion into [NiFe]-hydrogenase. Escherichia coli HypB has two potential Ni(II) and Zn(II) binding sites-the N-terminal one and the so-called GTPase one. The metal-loaded HypB-SlyD metallochaperone complex activates nickel release from the N-terminal HypB site. In this work, we focus on the metal selectivity of the two HypB metal binding sites and show that (i) the N-terminal region binds Zn(II) and Ni(II) ions with higher affinity than the G-domain and (ii) the lower affinity G domain binds Zn(II) more effectively than Ni(II). In addition, the high affinity N-terminal domain, both in water and membrane mimicking SDS solution, has a larger affinity towards Zn(II) than Ni(II), while an opposite situation is observed at basic pH; at pH 7.4, the affinity of this region towards both metals is almost the same. The N-terminal HypB region is also more effective in Ni(II) binding than the previously studied SlyD metal binding regions. Considering that the nickel chaperone SlyD activates the release of nickel and blocks the release of zinc from the N-terminal high-affinity metal site of HypB, we may speculate that such pH-dependent metal affinity might modulate HypB interactions with SlyD, being dependent on both pH and the protein's metal status.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Níquel/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Zinc/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Concentración de Iones de Hidrógeno , Níquel/química , Isomerasa de Peptidilprolil/química , Zinc/química
12.
Curr Med Chem ; 28(35): 7278-7294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34325628

RESUMEN

Polyphenols are a class of compounds, produced by plants, which share the ability to act as potent antioxidants. First investigations on polyphenols' antioxidant activity are dated almost twenty years ago when their relationship and implication with the prevention and treatment of cancer was proposed for the first time. Later, in the early 2000s, the neuroprotective effects of several polyphenols were demonstrated. Nowadays, the benefits of a plethora of polyphenols have been studied and their ameliorating effects in several disease conditions, like cancer, cardiac and neuronal diseases are widely recognised. More than 1000 papers dealing with polyphenols and Alzheimer's disease have been published so far, describing the antioxidant properties, the metal chelating features and the anti-aggregating behavior of these compounds. The aim of this review is to rationalize, from a chemical point of view, the metal complexation mechanisms of polyphenols related to two significant events of Alzheimer's disease: oxidative stress and metal ion dyshomeostasis. In order to address this issue, we have herein discussed several aspects implicated in Alzheimer's disease and polyphenols involved in the treatment of the disease.


Asunto(s)
Enfermedad de Alzheimer , Polifenoles , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Antioxidantes , Quelantes , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico
13.
Life (Basel) ; 11(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923275

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, affecting millions of people worldwide, a number expected to exponentially increase in the future since no effective treatments are available so far. AD is characterized by severe cognitive dysfunctions associated with neuronal loss and connection disruption, mainly occurring in specific brain areas such as the hippocampus, cerebral cortex, and amygdala, compromising memory, language, reasoning, and social behavior. Proteomics and redox proteomics are powerful techniques used to identify altered proteins and pathways in AD, providing relevant insights on cellular pathways altered in the disease and defining novel targets exploitable for drug development. Here, we review the main results achieved by both -omics techniques, focusing on the changes occurring in AD mitochondria under oxidative stress and upon copper exposure. Relevant information arises by the comparative analysis of these results, evidencing alterations of common mitochondrial proteins, metabolic cycles, and cascades. Our analysis leads to three shared mitochondrial proteins, playing key roles in metabolism, ATP generation, oxidative stress, and apoptosis. Their potential as targets for development of innovative AD treatments is thus suggested. Despite the relevant efforts, no effective drugs against AD have been reported so far; nonetheless, various compounds targeting mitochondria have been proposed and investigated, reporting promising results.

14.
J Inorg Biochem ; 213: 111275, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33091731

RESUMEN

Often, in the search for a highly defined scientific phenomenon, a different one becomes apparent. This was also the case of this work, in the scope of which we planned to search for metal-enhanced, novel antibacterial/antifungal compounds. Instead, we denied the existence of such and revealed the details of the bioinorganic chemistry of Zn(II)-alloferon complexes. Zinc(II) complexes of alloferon 1 and 2, ligands with a sequential difference of one amino acid only, show a substantially different coordination pattern at physiological pH. In the case of Zn(II)-alloferon 1 species, a histamine-like binding mode is observed (N-terminal amine and imidazole of His-1) and the coordination sphere is completed with the imidazole nitrogens of His-6 and His-9; His-12 is not involved in binding. In the case of Zn(II)-alloferon 2, the N-terminal amine and all the three imidazoles present in the sequence participate in the coordination, however, with the chemical shift of His-5 being less affected than those of other imidazoles. The histamine-like binding in Zn(II)-alloferon 1 complex strongly enhances its thermodynamic stability in comparison to the His-1 lacking alloferon 2 analogue. Despite previous reports on the antibacterial and antifungal activity of alloferon 1, no such activity was detected, neither for alloferon 1 and 2 nor for their Zn(II) complexes.


Asunto(s)
Complejos de Coordinación/química , Péptidos/química , Zinc/química , Secuencia de Aminoácidos , Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Histidina/química , Ligandos , Espectrometría de Masas/métodos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Espectroscopía de Protones por Resonancia Magnética/métodos , Relación Estructura-Actividad , Termodinámica
15.
Life (Basel) ; 10(7)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698429

RESUMEN

Alzheimer's disease is a severe disorder that affects millions of people worldwide. It is a very debilitating disease with no cure at the moment. The necessity of finding an effective treatment is very demanding, and the entire scientific community is putting in a lot of effort to address this issue. The major hallmark of Alzheimer's disease is the presence of toxic aggregated species in the brain, impaired metal homeostasis, and high levels of oxidative stress. Rosmarinic acid is a well-known potent antioxidant molecule, the efficacy of which has been proved both in vitro and in vivo. In this study, we investigated the possible role played by rosmarinic acid as a mediator of the copper(II)-induced neurotoxicity. Several spectroscopic techniques and biological assays were applied to characterize the metal complexes and to evaluate the cytotoxicity and the mutagenicity of rosmarinic acid and its Cu(II) complex. Our data indicate that rosmarinic acid is able to interfere with the interaction between amyloid ß and Cu(II) by forming an original ternary association.

16.
Inorg Chem ; 59(3): 1947-1958, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31970989

RESUMEN

The crystal structure of ZnZnuA from Escherichia coli reveals two metal binding sites. (i) The primary binding site, His143, is located close the His-rich loop (residues 116-138) and plays a significant role in Zn(II) acquisition. (ii) The secondary binding site involves His224. In this work, we focus on understanding the interactions of two metal ions, Zn(II) and Cu(II), with two regions of ZnuA, which are possible anchoring sites for Zn(II): Ac-115MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW145-NH2 (primary metal binding site) and Ac-223GHFTVNPEIQPGAQRLHE240-NH2 (secondary metal binding site). The histidine-rich loop (residues 116-138) has a role in the capture of zinc(II), which is then further delivered into other regions of the protein. For both Zn(II) complexes, histidine residues constitute the main anchoring donors. In the longer, His-rich fragment, a tetrahedral complex with four His residues is formed, while in the second ligand, two imidazole nitrogens are involved in zinc(II) binding. In both cases, so-called loop structures are formed. One consists of a 125HxHxExxxExHxH137 motif with seven amino acid residues in the loop between the two central histidines, while the other is formed by a 224HFTVNPEIQPGAQRLH239 motif with 14 amino acid residues in the loop between the two nearest coordinating histidines. The number of available imidazoles also strongly affects the structure of copper(II) complexes; the more histidines in the studied region, the higher the pH in which amide nitrogens will participate in Cu(II) binding.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Complejos de Coordinación/química , Proteínas de Escherichia coli/química , Zinc/química , Sitios de Unión , Cobre/química , Concentración de Iones de Hidrógeno
17.
Inorg Chem ; 59(1): 274-286, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31820933

RESUMEN

Tau protein is present in significant amounts in neurons, where it contributes to the stabilization of microtubules. Insoluble neurofibrillary tangles of tau are associated with several neurological disorders known as tauopathies, among which is Alzheimer's disease. In neurons, tau binds tubulin through its microtubule binding domain which comprises four imperfect repeats (R1-R4). The histidine residues contained in these fragments are potential binding sites for metal ions and are located close to the regions that drive the formation of amyloid aggregates of tau. In this study, we present a detailed characterization through potentiometric and spectroscopic methods of the binding of copper in both oxidation states to R1 and R3 peptides, which contain one and two histidine residues, respectively. We also evaluate how the redox cycling of copper bound to tau peptides can mediate oxidation that can potentially target exogenous substrates such as neuronal catecholamines. The resulting quinone oxidation products undergo oligomerization and can competitively give post-translational peptide modifications yielding catechol adducts at amino acid residues. The presence of His-His tandem in the R3 peptide strongly influences both the binding of copper and the reactivity of the resulting copper complex. In particular, the presence of the two adjacent histidines makes the copper(I) binding to R3 much stronger than in R1. The copper-R3 complex is also much more active than the copper-R1 complex in promoting oxidative reactions, indicating that the two neighboring histidines activate copper as a catalyst in molecular oxygen activation reactions.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fragmentos de Péptidos/química , Proteínas tau/química , Sitios de Unión , Humanos , Conformación Molecular
18.
Inorg Chem ; 58(16): 10920-10927, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31369243

RESUMEN

The effect of Cu2+ on α-synuclein (AS) aggregation is important because clinical studies of patients with Parkinson's disease have shown elevated levels of Cu2+ in the cerebrospinal fluid. So far, the molecular architectures of Cu2+-AS fibril complexes at atomic resolution are unknown. The current work identifies for the first time that His50 cannot bind Cu2+ ions in mature fibrils. Moreover, it shows hopping of Cu2+ ions between residues in AS fibrils and changes in the Cu2+ coordination mode in Cu2+ ions that bind in the termini of AS. The current study combines extensive experimental techniques, density functional theory calculations, and computational modeling tools to provide a complete description of the Cu2+ binding site in AS fibrils. Our findings illustrate for the first time the specific interactions between Cu2+ ions and AS fibrils, suggesting a new mechanistic perspective on the effect of Cu2+ ions on AS aggregation.

19.
J Inorg Biochem ; 195: 31-38, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884319

RESUMEN

The N-terminal fragment of Aß (ß = beta) peptide is able to bind essential transition metal ions like, copper, zinc and iron. Metal binding usually occurs via the imidazole nitrogens of the three His residues which play a key role in the coordination chemistry. Among all the investigated systems, the interaction between copper and Amyloid ß assume a biological relevance because of the interplay between the two copper oxidation states, Cu(II) and Cu(I), and their involvement in redox reactions. Both copper ions share the ability to bind Amyloid ß. A huge number of investigations have demonstrated that Cu(II) anchors to the N-terminal amino and His6, His13/14 imidazole groups, while Cu(I) forms a linear complex by coordinating to the His13 and His14 dyad. In this study we have analyzed Cu(I) interaction with the Amyloid ß fragment encompassing the first 16 amino-acids. Our data were obtained by means of NMR spectroscopy which provided relevant structural details of the metal complexes. Our findings are consistent with the involvement of two or three His in the Cu(I) coordination sphere and indicate that His6 effectively participates to the metal binding.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Histidina/química , Fragmentos de Péptidos/química , Unión Proteica , Plata/metabolismo
20.
J Enzyme Inhib Med Chem ; 34(1): 657-664, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30727786

RESUMEN

14-3-3 are regulatory proteins that through protein-protein interactions (PPI) with numerous binding partners could be involved in several human diseases, including cancer, neurodegenerative disorders, and pathogens infections. Following our research interest in the development of 14-3-3 PPI inhibitors, here we exploited the privileged 4-aminoantipyrine scaffold in the design and synthesis of some derivatives endowed with antiproliferative activity against K-562 cells, and capable of binding to recombinant 14-3-3σ as evidenced by NMR spectroscopy. The binding mode was further explored by molecular modelling, while coupling confocal microscopy with intensitometric analysis showed that compound 1 was able to promote the nuclear translocation of c-Abl at low micromolar concentrations. Overall, 1 is chemically stable compared to parent 14-3-3 PPI inhibitors, and thus emerged as a confirmed hit for further development.


Asunto(s)
Proteínas 14-3-3/antagonistas & inhibidores , Antineoplásicos/farmacología , Benzamidas/farmacología , Pirazoles/farmacología , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzamidas/síntesis química , Benzamidas/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Células K562 , Estructura Molecular , Unión Proteica/efectos de los fármacos , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...