Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Pathogens ; 13(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668260

RESUMEN

Escherichia coli, a commensal microorganism found in the gastrointestinal tract of human and animal hosts, plays a central role in agriculture and public health. Global demand for animal products has promoted increased pig farming, leading to growing concerns about the prevalence of antibiotic-resistant E. coli strains in swine populations. It should be noted that a significant portion of antibiotics deployed in swine management belong to the critically important antibiotics (CIA) class, which should be reserved for human therapeutic applications. This study aimed to characterize the prevalence of antibiotic resistance, genetic diversity, virulence characteristics, and biofilm formation of E. coli strains in healthy pigs from various farms across central Portugal. Our study revealed high levels of antibiotic resistance, with resistance to tetracycline, ampicillin, tobramycin, and trimethoprim-sulfamethoxazole. Multidrug resistance is widespread, with some strains resistant to seven different antibiotics. The ampC gene, responsible for broad-spectrum resistance to cephalosporins and ampicillin, was widespread, as were genes associated with resistance to sulfonamide and beta-lactam antibiotics. The presence of high-risk clones, such as ST10, ST101, and ST48, are a concern due to their increased virulence and multidrug resistance profiles. Regarding biofilm formation, it was observed that biofilm-forming capacity varied significantly across different compartments within pig farming environments. In conclusion, our study highlights the urgent need for surveillance and implementation of antibiotic management measures in the swine sector. These measures are essential to protect public health, ensure animal welfare, and support the swine industry in the face of the growing global demand for animal products.

2.
Antibiotics (Basel) ; 13(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667052

RESUMEN

Escherichia coli, including extended-spectrum ß-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.

3.
Mar Drugs ; 22(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38535464

RESUMEN

The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in weight loss, there is a notable scarcity of scientific evidence supporting their effectiveness, and their regular consumption safety remains inadequately addressed. In this work, commercially available Arthrospira (Spirulina) platensis Gomont and/or Fucus vesiculosus L. supplements showed moderate capacity to inhibit the activity of carbohydrate-metabolizing enzymes, and to scavenge biologically relevant reactive species. IC25 values varying between 4.54 ± 0.81 and 66.73 ± 5.91 µg of dry extract/mL and between 53.74 ± 8.42 and 1737.96 ± 98.26 µg of dry extract/mL were obtained for α-glucosidase and aldose reductase, respectively. A weaker effect towards α-amylase activity was observed, with a maximum activity of the extracts not going beyond 33%, at the highest concentrations tested. Spirulina extracts showed generally better effects than those from F. vesiculosus. Similar results were observed concerning the antiradical capacity. In a general way, the extracts were able to intercept the in vitro-generated reactive species nitric oxide (•NO) and superoxide anion (O2•-) radicals, with better results for O2•-scavenging with the spirulina samples (IC25 values of 67.16 and 122.84 µg of dry extract/mL). Chemically, similar pigment profiles were observed between spirulina supplements and the authenticated counterpart. However, fucoxanthin, the chemotaxonomic marker of brown seaweeds, was not found in F. vesiculosus samples, pointing to the occurrence of a degradation phenomenon before, during, or after raw material processing. Our findings can contribute to providing data to allow regulatory entities (e.g., EFSA and FDA) to better rule these products in a way that can benefit society.


Asunto(s)
Decapodiformes , Suplementos Dietéticos , Spirulina , Animales , Óxido Nítrico , Extractos Vegetales
4.
J Physiol Biochem ; 80(2): 421-437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502466

RESUMEN

The endoplasmic reticulum (ER) is determinant to maintain cellular proteostasis. Upon unresolved ER stress, this organelle activates the unfolded protein response (UPR). Sustained UPR activates is known to occur in inflammatory processes, deeming the ER a potential molecular target for the treatment of inflammation. This work characterizes the inflammatory/UPR-related molecular machinery modulated by an in-house library of natural products, aiming to pave the way for the development of new selective drugs that act upon the ER to counter inflammation-related chronic diseases. Starting from a library of 134 compounds of natural occurrence, mostly occurring in medicinal plants, nontoxic molecules were screened for their inhibitory capacity against LPS-induced nuclear factor kappa B (NF-κB) activation in a luciferase-based reporter gene assay. Since several natural products inhibited NF-κB expression in THP-1 macrophages, their effect on reactive oxygen species (ROS) production and inflammasome activation was assessed, as well as their transcriptional outcome regarding ER stress. The bioactivities of several natural products are described herein for the first time. We report the anti-inflammatory potential of guaiazulene and describe 5-deoxykaempferol as a novel inhibitor of inflammasome activation. Furthermore, we describe the dual potential of 5-deoxykaempferol, berberine, guaiazulene, luteolin-4'-O-glucoside, myricetin, quercetagetin and sennoside B to modulate inflammatory signaling ER stress. Our results show that natural products are promising molecules for the discovery and pharmaceutical development of chemical entities able to modulate the inflammatory response, as well as proteostasis and the UPR.


Asunto(s)
Estrés del Retículo Endoplásmico , FN-kappa B , Especies Reactivas de Oxígeno , Transducción de Señal , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antiinflamatorios/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Inflamación/metabolismo , Productos Biológicos/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células THP-1 , Bibliotecas de Moléculas Pequeñas/farmacología , Lipopolisacáridos/farmacología
5.
Phytother Res ; 38(4): 1903-1931, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358734

RESUMEN

Herbal medicines are widely perceived as natural and safe remedies. However, their concomitant use with prescribed drugs is a common practice, often undertaken without full awareness of the potential risks and frequently without medical supervision. This practice introduces a tangible risk of herb-drug interactions, which can manifest as a spectrum of consequences, ranging from acute, self-limited reactions to unpredictable and potentially lethal scenarios. This review offers a comprehensive overview of herb-drug interactions, with a specific focus on medications targeting the Central and Peripheral Nervous Systems. Our work draws upon a broad range of evidence, encompassing preclinical data, animal studies, and clinical case reports. We delve into the intricate pharmacodynamics and pharmacokinetics underpinning each interaction, elucidating the mechanisms through which these interactions occur. One pressing issue that emerges from this analysis is the need for updated guidelines and sustained pharmacovigilance efforts. The topic of herb-drug interactions often escapes the attention of both consumers and healthcare professionals. To ensure patient safety and informed decision-making, it is imperative that we address this knowledge gap and establish a framework for continued monitoring and education. In conclusion, the use of herbal remedies alongside conventional medications is a practice replete with potential hazards. This review not only underscores the real and significant risks associated with herb-drug interactions but also underscores the necessity for greater awareness, research, and vigilant oversight in this often-overlooked domain of healthcare.


Asunto(s)
Plantas Medicinales , Animales , Humanos , Plantas Medicinales/efectos adversos , Interacciones de Hierba-Droga , Fármacos del Sistema Nervioso Periférico
6.
Antibiotics (Basel) ; 12(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370379

RESUMEN

Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.

7.
Bioorg Chem ; 138: 106614, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37216893

RESUMEN

The inflammatory response is a vital mechanism for repairing damage induced by aberrant health states or external insults; however, persistent activation can be linked to numerous chronic diseases. The nuclear factor kappa ß (NF-κB) inflammatory pathway and its associated mediators have emerged as critical targets for therapeutic interventions aimed at modulating inflammation, necessitating ongoing drug development. Previous studies have reported the inhibitory effect of a hydroethanol extract derived from Parinari excelsa Sabine (Chrysobalanaceae) on tumour necrosis factor-alpha (TNF-α), but the phytoconstituents and mechanisms of action remained elusive. The primary objective of this study was to elucidate the phytochemical composition of P. excelsa stem bark and its role in the mechanisms underpinning its biological activity. Two compounds were detected via HPLC-DAD-ESI(Ion Trap)-MS2 analysis. The predominant compound was isolated and identified as naringenin-8-sulphonate (1), while the identity of the second compound (compound 2) could not be determined. Both compound 1 and the extract were assessed for anti-inflammatory properties using a cell-based inflammation model, in which THP-1-derived macrophages were stimulated with LPS to examine the treatments' effects on various stages of the NF-κB pathway. Compound 1, whose biological activity is reported here for the first time, demonstrated inhibition of NF-κB activity, reduction in interleukin 6 (IL-6), TNF-α, and interleukin 1 beta (IL-1ß) production, as well as a decrease in p65 nuclear translocation in THP-1 cells, thus highlighting the potential role of sulphur substituents in the activity of naringenin (3). To explore the influence of sulphation on the anti-inflammatory properties of naringenin derivatives, we synthesized naringenin-4'-O-sulphate (4) and naringenin-7-O-sulphate (5) and evaluated their anti-inflammatory effects. Naringenin derivatives 4 and 5 did not display potent anti-inflammatory activities; however, compound 4 reduced IL-1ß production, and compound 5 diminished p65 translocation, with both exhibiting the capacity to inhibit TNF-α and IL-6 production. Collectively, the findings demonstrated that the P. excelsa extract was more efficacious than all tested compounds, while providing insights into the role of sulphation in the anti-inflammatory activity of naringenin derivatives.


Asunto(s)
Chrysobalanaceae , FN-kappa B , Humanos , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Chrysobalanaceae/metabolismo , Corteza de la Planta/metabolismo , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lipopolisacáridos/farmacología
8.
Int Immunopharmacol ; 119: 110178, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068339

RESUMEN

Inflammation and endoplasmic reticulum (ER) stress are often hand in hand in the context of chronic disease. Both are activated upon perceived disturbances in homeostasis, being deleterious when intensely or chronically activated. Fisetin (FST) is a dietary flavonol that is known to possess multiple relevant bioactivities, raising the question of its potential health benefits and even its use in novel pharmacological approaches against ER stress and inflammation. To attain this prospect, some limitations to this molecule, namely its poor bioavailability and solubility, must be addressed. In an attempt to improve the biological properties of the parent molecule, we have synthesized a set of FST derivatives. These new molecules were tested along with the original compound for their ability to mitigate the activation of the signaling pathways underlying inflammation and ER stress. By reducing LPS-induced nuclear factor-kappa B (NF-κB) activation, cytokine release, inflammasome activation and reactive oxygen species (ROS) generation, FST has proven to be effective against the onset of inflammation. The molecule also decreases the activation of the unfolded protein response (UPR), as evidenced by the reduced expression of relevant UPR-related genes upon ER stress induction. Some of the tested derivatives are novel inhibitors of targets associated to inflammation and ER stress signaling, in some cases more potent than the parent compound. Furthermore, the reduced cytotoxicity of some of these molecules enabled the use of higher concentrations than that of FST, resulting in the observation of enhanced bioactivities.


Asunto(s)
Antiinflamatorios , Estrés del Retículo Endoplásmico , Flavonoles , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo
9.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110524

RESUMEN

Solanum betaceum Cav., commonly known as tamarillo or Brazilian tomato, belongs to the Solanaceae family. Its fruit is used in traditional medicine and food crops due to its health benefits. Despite the numerous studies involving the fruit, there is no scientific knowledge about the tamarillo tree leaves. In this work, the phenolic profile of aqueous extract obtained from S. betaceum leaves was unveiled for the first time. Five hydroxycinnamic phenolic acids were identified and quantified, including 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, chlorogenic acid, caffeic acid and rosmarinic acid. While the extract displayed no effect on α-amylase, the extract inhibited the activity of α-glucosidase (IC50 = 1617 mg/mL), and it was particularly effective for human aldose reductase (IC50 = 0.236 mg/mL): a key enzyme in glucose metabolism. Moreover, the extract exhibited interesting antioxidant properties, such as a potent capacity to intercept the in vitro-generated reactive species O2•- (IC50 = 0.119 mg/mL) and •NO (IC50 = 0.299 mg/mL), as well as to inhibit the first stages of lipid peroxidation (IC50 = 0.080 mg/mL). This study highlights the biological potential of S. betaceum leaves. The scarcity of research on this natural resource underscores the need for additional studies in order to fully explore its antidiabetic properties and to promote the value of a species currently at risk of extinction.


Asunto(s)
Solanum , Humanos , Solanum/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Frutas , Fenoles/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
10.
Food Res Int ; 167: 112615, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087203

RESUMEN

Kitul (Caryota urens L.) inflorescences are broadly used for sweet sap production in Asian countries and Kitul food products are known as being suitable for diabetic patients. Considering the strong ability to inhibit α-glucosidase, we hypothesize that kitul antidiabetic properties might also involve the modulation of inflammatory pathways and hyperglycaemia-induced oxidative damage. Hence, the effects of an inflorescence's methanol extract were investigated in glucose-stimulated pancreatic cells (RIN-5F) and LPS-stimulated RAW 264.7 macrophages. The extract reduced the overproduction of intracellular reactive species in pancreatic cells and also NO, L-citrulline and IL-6 levels in LPS-stimulated RAW 264.7 macrophages. Inhibition of 5-lipoxygenase (IC50 = 166.1 µg/mL) through an uncompetitive manner was also recorded upon treatment with C. urens inflorescences extract. The phenolic profile of the inflorescences was characterized by HPLC-DAD, six hydroxycinnamic acids being identified and quantified. Overall, our data provide additional evidence on the pleiotropic mechanisms of Kitul inflorescences as an antidiabetic agent.


Asunto(s)
Glucosa , Extractos Vegetales , Humanos , Ratones , Animales , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Macrófagos , Plantas Comestibles/metabolismo
11.
Life (Basel) ; 13(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36836763

RESUMEN

The present work aimed to detail the mechanisms elicited by Allophylus africanus P. Beauv. stem bark extract in human stomach cancer cells and to identify the bioactives underlying the cytotoxicity. MTT reduction and LDH leakage assays allowed characterizing the cytotoxic effects in AGS cells, which were further detailed by morphological analysis using phalloidin and Hoechst 33258. Proapoptotic mechanisms were elucidated through a mitochondrial membrane potential assay and by assessing the impact upon the activity of caspase-9 and -3. The extract displayed selective cytotoxicity against AGS cells. The absence of plasma membrane permeabilization, along with apoptotic body formation, suggested that pro-apoptotic effects triggered cell death. Intrinsic apoptosis pathway activation was verified, as mitochondrial membrane potential decrease and activation of caspase-9 and -3 were observed. HPLC-DAD profiling enabled the identification of two apigenin-di-C-glycosides, vicenin-2 (1) and apigenin-6-C-hexoside-8-C-pentoside (3), as well as three mono-C-glycosides-O-glycosylated derivatives, apigenin-7-O-hexoside-8-C-hexoside (2), apigenin-8-C-(2-rhamnosyl)hexoside (4) and apigenin-6-C-(2-rhamnosyl)hexoside (5). Isovitexin-2″-O-rhamnoside (5) is the main constituent, accounting for nearly 40% of the total quantifiable flavonoid content. Our results allowed us to establish the relationship between the presence of vicenin-2 and other apigenin derivatives with the contribution to the cytotoxic effects on the presented AGS cells. Our findings attest the anticancer potential of A. africanus stem bark against gastric adenocarcinoma, calling for studies to develop herbal-based products and/or the use of apigenin derivatives in chemotherapeutic drug development.

12.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557886

RESUMEN

Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8-14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine.


Asunto(s)
Conyza , Mentha , Salvia , Teucrium , Ratas , Animales , Vasodilatadores/farmacología , Ratas Wistar , Mentha/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Salvia/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Vasodilatación , Aorta/metabolismo , Aorta Torácica , Receptores Muscarínicos/metabolismo , Derivados de Atropina/metabolismo , Derivados de Atropina/farmacología
13.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431805

RESUMEN

BACKGROUND: The use of plants for therapeutic purposes has been supported by growing scientific evidence. METHODS: This work consisted of (i) characterizing the phenolic compounds present in both aqueous and hydroethanol (1:1, v/v) extracts of camel grass, by hyphenated liquid chromatographic techniques, (ii) evaluating their anti-inflammatory, antioxidant, and neuromodulation potential, through in vitro cell and cell-free models, and (iii) establishing a relationship between the chemical profiles of the extracts and their biological activities. RESULTS: Several caffeic acid and flavonoid derivatives were determined in both extracts. The extracts displayed scavenging capacity against the physiologically relevant nitric oxide (•NO) and superoxide anion (O2•-) radicals, significantly reduced NO production in lipopolysaccharide (LPS)-stimulated macrophages (RAW 264.7), and inhibited the activity of hyaluronidase (HAase), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Some of these bioactivities were found to be related with the chemical profile of the extracts, namely with 3-caffeoylquinic, 4-caffeoylquinic, chlorogenic, and p-coumaric acids, as well as with luteolin and apigenin derivatives. CONCLUSIONS: This study reports, for the first time, the potential medicinal properties of aqueous and hydroethanol extracts of camel grass in the RAW 264.7 cell model of inflammation, and in neurologically related conditions.


Asunto(s)
Butirilcolinesterasa , Camelus , Animales , Acetilcolinesterasa , Poaceae , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/química , Inflamación/tratamiento farmacológico
14.
Front Pharmacol ; 13: 956154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935873

RESUMEN

The homeostasis of eukaryotic cells is inseverable of that of the endoplasmic reticulum (ER). The main function of this organelle is the synthesis and folding of a significant portion of cellular proteins, while it is also the major calcium reservoir of the cell. Upon unresolved ER stress, a set of stress response signaling pathways that are collectively labeled as the unfolded protein response (UPR) is activated. Prolonged or intense activation of this molecular machinery may be deleterious. It is known that compromised ER homeostasis, and consequent UPR activation, characterizes the pathogenesis of neurodegenerative diseases. In an effort to discover new small molecules capable of countering ER stress, we subjected a panel of over 100 natural molecules to a battery of assays designed to evaluate several hallmarks of ER stress. The protective potential of these compounds against ER stress was evaluated at the levels of calcium homeostasis, key gene and protein expression, and levels of protein aggregation in fibroblasts. The most promising compounds were subsequently tested in neuronal cells. This framework resulted in the identification of several bioactive molecules capable of countering ER stress and deleterious events associated to it. Delphinidin stands out as the most promising candidate against neurodegeneration. This compound significantly inhibited the expression of UPR biomarkers, and displayed a strong potential to inhibit protein aggregation in the two aforementioned cell models. Our results indicate that natural products may be a valuable resource in the development of an effective therapeutic strategy against ER stress-related diseases.

15.
Pharmaceutics ; 14(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35745745

RESUMEN

Food extract's biological effect and its improvement using nanotechnologies is one of the challenges of the last and the future decades; for this reason, the antioxidant effect of scarlet eggplant extract liposomal incorporation was investigated. Scarlet eggplant (Solanum aethiopicum L.) is a member of the Solanaceae family, and it is one of the most consumed vegetables in tropical Africa and south of Italy. This study investigated the antioxidant activity and the phytochemical composition of S. aethiopicum grown in the Basilicata Region for the first time. The whole fruit, peel, and pulp were subjected to ethanolic exhaustive maceration extraction, and all extracts were investigated. The HPLC-DAD analysis revealed the presence of ten phenolic compounds, including hydroxycinnamic acids, flavanones, flavanols, and four carotenoids (one xanthophyll and three carotenes). The peel extract was the most promising, active, and the richest in specialized metabolites; hence, it was tested on HepG2 cell lines and incorporated into liposomes. The nanoincorporation enhanced the peel extract's antioxidant activity, resulting in a reduction of the concentration used. Furthermore, the extract improved the expression of endogenous antioxidants, such as ABCG2, CAT, and NQO1, presumably through the Nrf2 pathway.

16.
Food Res Int ; 155: 111082, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400458

RESUMEN

Among several extracts from species from Guinea-Bissauan flora, the hydroethanol extract obtained from the leaves of gingerbread plum (Neocarya macrophylla (Sabine) Prance ex F. White.) revealed to be one of the most cytotoxic towards human gastric AGS carcinoma cells. Considering the increasing use of N. macrophylla in the food industry and the abundant biomass of agricultural wastes being generated, the identification of phenolic bioactives has been attained by HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn. Twenty-seven phenolic constituents were identified for the first time in the monotypic genus Neosartorya, 5-O-caffeoylquinic acid being detected as the major constituent (4.90 ± 0.20 mg g-1 dry extract). While 15 flavan-3-ols derivatives were determined, the extract is predominantly characterized by the occurrence of quercetin, kaempferol, apigenin and chrysoeriol glycosides. Typical apoptotic changes in gastric adenocarcinoma AGS cells upon exposure to N. macrophylla leaf extract were observed. The apoptotic cell death is mediated by the activation of the mitochondrial pathway, as loss of mitochondrial membrane potential was detected, as well as increased caspase-9 and -3 activities. The industrial relevance of this plant material, along with the data presented here on the potential anticancer effects of N. macrophylla and the efficient extraction of phenolic bioactives using water and ethanol (GRAS substance), calls for further research on the leaves as a potential functional food and/or ingredient.


Asunto(s)
Carcinoma , Chrysobalanaceae , Cromatografía Líquida de Alta Presión , Humanos , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Espectrometría de Masa por Ionización de Electrospray
17.
Int J Pharm ; 620: 121774, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35489602

RESUMEN

Flavonoid-based therapies supported by nanotechnology are considered valuable strategies to prevent or delay age-related and chronic neurodegenerative disorders. Egg yolk phospholipids were combined with flavonoid-rich extracts obtained from Trichilia catigua A.Juss. (rich in flavan-3-ols and phenylpropanoid derivatives) or Turnera diffusa Willd. ex Schult (dominated by luteolin derivatives) to prepare nanophytosomes. The nanophytosomes showed that size and surface charge of the lipid-based vesicles are dependent of their phenolic composition. In vitro assays with SH-SY5Y cells showed that both formulations protect cells from glutamate-induced toxicity, but not from 6-hydroxydopamine/ascorbic acid. T. diffusa nanophytosomes promote a decrease of nitric oxide produced by BV-2 cells stimulated with interferon-γ. Nanophytosomes dialysed against a mannitol solution, and then lyophilised, allow to obtain freeze-dried products that after re-hydration preserve the essential physicochemical features of the original formulations, and exhibit improved colloidal stability. These results indicate that these flavonoid/phospholipid-based nanophytosomes have suitable features to be considered as tool in the development of therapeutic and food applications.


Asunto(s)
Meliaceae , Nanoestructuras , Turnera , Meliaceae/química , Enfermedades Neuroinflamatorias , Fosfolípidos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles , Turnera/química
18.
Mar Drugs ; 21(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36662196

RESUMEN

Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.


Asunto(s)
Phaeophyceae , Algas Marinas , Verduras , Bacterias , Plantas
19.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36612288

RESUMEN

The last century has witnessed the establishment of neoplastic disease as the second cause of death in the world. Nonetheless, the road toward desirable success rates of cancer treatments is still long and paved with uncertainty. This work aims to select natural products that act via endoplasmic reticulum (ER) stress, a known vulnerability of malignant cells, and display selective toxicity against cancer cell lines. Among an in-house chemical library, nontoxic molecules towards noncancer cells were assessed for toxicity towards cancer cells, namely the human gastric adenocarcinoma cell line AGS and the lung adenocarcinoma cell line A549. Active molecules towards at least one of these cell lines were studied in a battery of ensuing assays to clarify the involvement of ER stress and unfolded protein response (UPR) in the cytotoxic effect. Several natural products are selectively cytotoxic against malignant cells, and the effect often relies on ER stress induction. Berberine was the most promising molecule, being active against both cell models by disrupting Ca2+ homeostasis, inducing UPR target gene expression and ER-resident caspase-4 activation. Our results indicate that berberine and emodin are potential leads for the development of more potent ER stressors to be used as selective anticancer agents.

20.
J Fungi (Basel) ; 7(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946989

RESUMEN

Fungal phytopathogens are a growing problem all over the world; their propagation causes significant crop losses, affecting the quality of fruits and vegetables, diminishing the availability of food, leading to the loss of billions of euros every year. To control fungal diseases, the use of synthetic chemical fungicides is widely applied; these substances are, however, environmentally damaging. Marine algae, one of the richest marine sources of compounds possessing a wide range of bioactivities, present an eco-friendly alternative in the search for diverse compounds with industrial applications. The synthesis of such bioactive compounds has been recognized as part of microalgal responsiveness to stress conditions, resulting in the production of polyphenols, polysaccharides, lipophilic compounds, and terpenoids, including halogenated compounds, already described as antimicrobial agents. Furthermore, many studies, in vitro or in planta, have demonstrated the inhibitory activity of these compounds with respect to fungal phytopathogens. This review aims to gather the maximum of information addressing macroalgae extracts with potential inhibition against fungal phytopathogens, including the best inhibitory results, while presenting some already reported mechanisms of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...