Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709497

RESUMEN

The localization of translation can direct the polypeptide product to the proper intracellular compartment. Our results reveal translation by cytosolic ribosomes on a domain of the chloroplast envelope in the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii). We show that this envelope domain of isolated chloroplasts retains translationally active ribosomes and mRNAs encoding chloroplast proteins. This domain is aligned with localized translation by chloroplast ribosomes in the translation zone, a chloroplast compartment where photosystem subunits encoded by the plastid genome are synthesized and assembled. Roles of localized translation in directing newly synthesized subunits of photosynthesis complexes to discrete regions within the chloroplast for their assembly are suggested by differences in localization on the chloroplast of mRNAs encoding either subunit of the light-harvesting complex II or the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Transcription of the chloroplast genome is spatially coordinated with translation, as revealed by our demonstration of a subpopulation of transcriptionally active chloroplast nucleoids at the translation zone. We propose that the expression of chloroplast proteins by the nuclear-cytosolic and organellar genetic systems is organized in spatially aligned subcompartments of the cytoplasm and chloroplast to facilitate the biogenesis of the photosynthetic complexes.

2.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598282

RESUMEN

Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Acetilación , Microscopía por Crioelectrón , Procesamiento Proteico-Postraduccional
3.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756660

RESUMEN

Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show that the microtubules at the tip are highly crosslinked with each other and stabilized by luminal proteins, plugs, and cap proteins at the plus ends. In the tip region, the central pair lacks typical projections and twists significantly. By analyzing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explained the potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and the mechanisms of ciliary assembly and length regulation.


Asunto(s)
Cilios , Microtúbulos , Tetrahymena thermophila , Axonema , Cilios/metabolismo , Microtúbulos/metabolismo , Tetrahymena thermophila/metabolismo
4.
Nat Commun ; 14(1): 5741, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714832

RESUMEN

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Microscopía por Crioelectrón , Citoesqueleto , Axonema , Proteínas Amiloidogénicas
5.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398254

RESUMEN

Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.

6.
Nat Commun ; 14(1): 2168, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061538

RESUMEN

Cilia are ubiquitous eukaryotic organelles responsible for cellular motility and sensory functions. The ciliary axoneme is a microtubule-based cytoskeleton consisting of two central singlets and nine outer doublet microtubules. Cryo-electron microscopy-based studies have revealed a complex network inside the lumen of both tubules composed of microtubule-inner proteins (MIPs). However, the functions of most MIPs remain unknown. Here, we present single-particle cryo-EM-based analyses of the Tetrahymena thermophila native doublet microtubule and identify 42 MIPs. These data shed light on the evolutionarily conserved and diversified roles of MIPs. In addition, we identified MIPs potentially responsible for the assembly and stability of the doublet outer junction. Knockout of the evolutionarily conserved outer junction component CFAP77 moderately diminishes Tetrahymena swimming speed and beat frequency, indicating the important role of CFAP77 and outer junction stability in cilia beating generation and/or regulation.


Asunto(s)
Tetrahymena thermophila , Tetrahymena , Tetrahymena thermophila/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo , Axonema/metabolismo , Citoesqueleto/metabolismo , Cilios/metabolismo , Proteínas de Microtúbulos/metabolismo , Tetrahymena/metabolismo
7.
EMBO Rep ; 22(9): e52911, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34338432

RESUMEN

Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.


Asunto(s)
Dineínas Axonemales , Dineínas , Dineínas Axonemales/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Microscopía por Crioelectrón , Dineínas/metabolismo , Humanos , Microtúbulos/metabolismo
8.
Plant Cell ; 31(12): 3057-3072, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591163

RESUMEN

Intracellular processes can be localized for efficiency or regulation. For example, localized mRNA translation by chloroplastic ribosomes occurs in the biogenesis of PSII, one of the two photosystems of the photosynthetic electron transport chain in the chloroplasts of plants and algae. The biogenesis of PSI and PSII requires the synthesis and assembly of their constituent polypeptide subunits, pigments, and cofactors. Although these biosynthetic pathways are well characterized, less is known about when and where they occur in developing chloroplasts. Here, we used fluorescence microscopy in the unicellular alga Chlamydomonas reinhardtii to reveal spatiotemporal organization in photosystem biogenesis. We focused on translation by chloroplastic ribosomes and chlorophyll biosynthesis in two developmental contexts of active photosystem biogenesis: (1) growth of the mature chloroplast and (2) greening of a nonphotosynthetic chloroplast. The results reveal that a translation zone is the primary location of the biogenesis of PSI and PSII. This discretely localized region within the chloroplast contrasts with the distributions of photosystems throughout this organelle and, therefore, is likely a hub where anabolic pathways converge for photosystem biogenesis.plantcell;31/12/3057/FX1F1fx1.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas/metabolismo , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Chlamydomonas/genética , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/genética , Clorofila/biosíntesis , Cloroplastos/efectos de la radiación , Mitosis/genética , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/efectos de la radiación , ARN Mensajero/genética , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...