Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 15, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273328

RESUMEN

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Asunto(s)
Ecosistema , Agua Subterránea , Bacterias/genética , Bacterias/metabolismo , Sulfuros/metabolismo , Oxidación-Reducción , Agua Subterránea/microbiología , Azufre/metabolismo , Biopelículas , Hidrógeno/metabolismo , Filogenia
2.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37127263

RESUMEN

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis
3.
Nature ; 610(7933): 731-736, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261517

RESUMEN

Anaerobic methane oxidation exerts a key control on greenhouse gas emissions1, yet factors that modulate the activity of microorganisms performing this function remain poorly understood. Here we discovered extraordinarily large, diverse DNA sequences that primarily encode hypothetical proteins through studying groundwater, sediments and wetland soil where methane production and oxidation occur. Four curated, complete genomes are linear, up to approximately 1 Mb in length and share genome organization, including replichore structure, long inverted terminal repeats and genome-wide unique perfect tandem direct repeats that are intergenic or generate amino acid repeats. We infer that these are highly divergent archaeal extrachromosomal elements with a distinct evolutionary origin. Gene sequence similarity, phylogeny and local divergence of sequence composition indicate that many of their genes were assimilated from methane-oxidizing Methanoperedens archaea. We refer to these elements as 'Borgs'. We identified at least 19 different Borg types coexisting with Methanoperedens spp. in four distinct ecosystems. Borgs provide methane-oxidizing Methanoperedens archaea access to genes encoding proteins involved in redox reactions and energy conservation (for example, clusters of multihaem cytochromes and methyl coenzyme M reductase). These data suggest that Borgs might have previously unrecognized roles in the metabolism of this group of archaea, which are known to modulate greenhouse gas emissions, but further studies are now needed to establish their functional relevance.


Asunto(s)
Methanosarcinales , Aminoácidos/genética , Anaerobiosis , Citocromos/genética , Citocromos/metabolismo , Ecosistema , Sedimentos Geológicos , Gases de Efecto Invernadero/metabolismo , Metano/metabolismo , Methanosarcinales/clasificación , Methanosarcinales/genética , Methanosarcinales/metabolismo , Oxidación-Reducción , Filogenia , Suelo
4.
ISME Commun ; 2(1): 70, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37938723

RESUMEN

Bacteria of the phylum Acidobacteria are one of the most abundant groups across soil ecosystems, yet they are represented by comparatively few sequenced genomes, leaving gaps in our understanding of their metabolic diversity. Recently, genomes of Acidobacteria species with unusually large repertoires of biosynthetic gene clusters (BGCs) were reconstructed from grassland soil metagenomes, but the degree to which species with this trait are widespread is still unknown. To investigate this, we assembled 46 metagenome-assembled genomes recovered from permanently saturated organic-rich soils of a vernal (spring) pool ecosystem in Northern California. We obtained high and medium-quality draft genomes for three novel species from Candidatus Angelobacter (a proposed subdivision 1 Acidobacterial genus), a genus that is genomically enriched in genes for specialized metabolite biosynthesis. Acidobacteria were particularly abundant in the vernal pool sediments, and a Ca. Angelobacter species was the most abundant bacterial species detected in some samples. We identified numerous diverse biosynthetic gene clusters in these genomes, and also in five additional genomes from other publicly available soil metagenomes for other related Ca. Angelobacter species. Metabolic analysis indicates that Ca. Angelobacter likely are aerobes that ferment organic carbon, with potential to contribute to carbon compound turnover in soils. Using metatranscriptomics, we identified in situ metabolic activity and expression of specialized metabolic traits for two species from this genus. In conclusion, we expand genomic sampling of the uncultivated Ca. Angelobacter, and show that they represent common and sometimes highly abundant members of dry and saturated soil communities, with a high degree of capacity for synthesis of diverse specialized metabolites.

5.
mBio ; 12(4): e0052121, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253055

RESUMEN

Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth's ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions among these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Evolución Molecular , Metagenoma , Animales , Ecosistema , Genoma Bacteriano , Genómica , Filogenia , ARN Ribosómico 16S/genética
6.
PLoS One ; 16(5): e0251296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34038425

RESUMEN

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Asunto(s)
COVID-19/diagnóstico , Evaluación de Programas y Proyectos de Salud , Saliva/virología , Adulto , Anciano , COVID-19/epidemiología , COVID-19/virología , Prueba de COVID-19/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Normas Sociales , Encuestas y Cuestionarios , Universidades , Adulto Joven
7.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821786

RESUMEN

Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartment in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Azufre/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Synechococcus/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(27): 15740-15747, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32576688

RESUMEN

Despite very low concentrations of cobalt in marine waters, cyanobacteria in the genus Prochlorococcus retain the genetic machinery for the synthesis and use of cobalt-bearing cofactors (cobalamins) in their genomes. We explore cobalt metabolism in a Prochlorococcus isolate from the equatorial Pacific Ocean (strain MIT9215) through a series of growth experiments under iron- and cobalt-limiting conditions. Metal uptake rates, quantitative proteomic measurements of cobalamin-dependent enzymes, and theoretical calculations all indicate that Prochlorococcus MIT9215 can sustain growth with less than 50 cobalt atoms per cell, ∼100-fold lower than minimum iron requirements for these cells (∼5,100 atoms per cell). Quantitative descriptions of Prochlorococcus cobalt limitation are used to interpret the cobalt distribution in the equatorial Pacific Ocean, where surface concentrations are among the lowest measured globally but Prochlorococcus biomass is high. A low minimum cobalt quota ensures that other nutrients, notably iron, will be exhausted before cobalt can be fully depleted, helping to explain the persistence of cobalt-dependent metabolism in marine cyanobacteria.


Asunto(s)
Organismos Acuáticos/metabolismo , Cobalto/metabolismo , Prochlorococcus/metabolismo , Vitamina B 12/metabolismo , Biomasa , Genoma Bacteriano/genética , Hierro/metabolismo , Océano Pacífico , Filogenia , Prochlorococcus/genética , Prochlorococcus/crecimiento & desarrollo , Proteómica , Agua de Mar/química , Vitamina B 12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...