Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metabolites ; 12(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35208192

RESUMEN

We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.

2.
Sci Rep ; 8(1): 3211, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453343

RESUMEN

The present study investigated the effect of chronic exercise on fluoride (F) metabolism in fluorosis-susceptible mice exposed to high-F and explored the relationship between F concentrations in bone and plasma. Thirty male mice were randomised into three groups: Group I (No-F, No-Exercise), Group II (50 ppmF, No-Exercise), Group III (50 ppmF, Exercise). Body weight and physical performance of all mice were measured at baseline and end of experiment. F concentrations of plasma and bone were measured at the end of experiment. Mean plasma F concentration was significantly higher (p < 0.001) in Groups II and III compared with Group I. Mean bone F concentration was also significantly higher (p < 0.01) in Groups II and III compared with Group I. There was a significant correlation (p = 0.01, r = 0.54) between F concentration of plasma and bone. Mean body weight of Group I mice was significantly higher than Group II (p < 0.001) and Group III (p = 0.001) mice at the end of the experiment. This study, which provides the first data on the effect of chronic exercise on F metabolism in fluorosis-susceptible mice, suggests no effect of chronic exercise on F in plasma and bone. However, exposure to high-F resulted in lower body weight and exercise capacity in mice.


Asunto(s)
Fluoruros/metabolismo , Fluoruros/farmacología , Condicionamiento Físico Animal/fisiología , Animales , Peso Corporal/efectos de los fármacos , Huesos/química , Fluoruros/sangre , Fluorosis Dental , Masculino , Ratones , Rendimiento Físico Funcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA