Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Bioinform Adv ; 4(1): vbae036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577542

RESUMEN

Motivation: Graph representation learning is a family of related approaches that learn low-dimensional vector representations of nodes and other graph elements called embeddings. Embeddings approximate characteristics of the graph and can be used for a variety of machine-learning tasks such as novel edge prediction. For many biomedical applications, partial knowledge exists about positive edges that represent relationships between pairs of entities, but little to no knowledge is available about negative edges that represent the explicit lack of a relationship between two nodes. For this reason, classification procedures are forced to assume that the vast majority of unlabeled edges are negative. Existing approaches to sampling negative edges for training and evaluating classifiers do so by uniformly sampling pairs of nodes. Results: We show here that this sampling strategy typically leads to sets of positive and negative examples with imbalanced node degree distributions. Using representative heterogeneous biomedical knowledge graph and random walk-based graph machine learning, we show that this strategy substantially impacts classification performance. If users of graph machine-learning models apply the models to prioritize examples that are drawn from approximately the same distribution as the positive examples are, then performance of models as estimated in the validation phase may be artificially inflated. We present a degree-aware node sampling approach that mitigates this effect and is simple to implement. Availability and implementation: Our code and data are publicly available at https://github.com/monarch-initiative/negativeExampleSelection.

2.
Sci Data ; 11(1): 363, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605048

RESUMEN

Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Bases del Conocimiento , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Investigación Biomédica Traslacional
3.
Int J Med Inform ; 187: 105461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643701

RESUMEN

OBJECTIVE: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (for example, endometriosis, ovarian cyst, and uterine fibroids). MATERIALS AND METHODS: We harmonized survey data from the Personalized Environment and Genes Study (PEGS) on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. RESULTS: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant or suggestive predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. DISCUSSION: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal but can support hypothesis generation. CONCLUSION: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Enfermedades de los Genitales Femeninos , Modelos Logísticos , Estado Nutricional , Dieta , Adulto , Bosques Aleatorios
5.
medRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37503093

RESUMEN

Objective: Large Language Models such as GPT-4 previously have been applied to differential diagnostic challenges based on published case reports. Published case reports have a sophisticated narrative style that is not readily available from typical electronic health records (EHR). Furthermore, even if such a narrative were available in EHRs, privacy requirements would preclude sending it outside the hospital firewall. We therefore tested a method for parsing clinical texts to extract ontology terms and programmatically generating prompts that by design are free of protected health information. Materials and Methods: We investigated different methods to prepare prompts from 75 recently published case reports. We transformed the original narratives by extracting structured terms representing phenotypic abnormalities, comorbidities, treatments, and laboratory tests and creating prompts programmatically. Results: Performance of all of these approaches was modest, with the correct diagnosis ranked first in only 5.3-17.6% of cases. The performance of the prompts created from structured data was substantially worse than that of the original narrative texts, even if additional information was added following manual review of term extraction. Moreover, different versions of GPT-4 demonstrated substantially different performance on this task. Discussion: The sensitivity of the performance to the form of the prompt and the instability of results over two GPT-4 versions represent important current limitations to the use of GPT-4 to support diagnosis in real-life clinical settings. Conclusion: Research is needed to identify the best methods for creating prompts from typically available clinical data to support differential diagnostics.

6.
Front Bioinform ; 3: 1304099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076030

RESUMEN

The recent breakthroughs of Large Language Models (LLMs) in the context of natural language processing have opened the way to significant advances in protein research. Indeed, the relationships between human natural language and the "language of proteins" invite the application and adaptation of LLMs to protein modelling and design. Considering the impressive results of GPT-4 and other recently developed LLMs in processing, generating and translating human languages, we anticipate analogous results with the language of proteins. Indeed, protein language models have been already trained to accurately predict protein properties, generate novel functionally characterized proteins, achieving state-of-the-art results. In this paper we discuss the promises and the open challenges raised by this novel and exciting research area, and we propose our perspective on how LLMs will affect protein modeling and design.

7.
EBioMedicine ; 96: 104777, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672869

RESUMEN

BACKGROUND: The cause and symptoms of long COVID are poorly understood. It is challenging to predict whether a given COVID-19 patient will develop long COVID in the future. METHODS: We used electronic health record (EHR) data from the National COVID Cohort Collaborative to predict the incidence of long COVID. We trained two machine learning (ML) models - logistic regression (LR) and random forest (RF). Features used to train predictors included symptoms and drugs ordered during acute infection, measures of COVID-19 treatment, pre-COVID comorbidities, and demographic information. We assigned the 'long COVID' label to patients diagnosed with the U09.9 ICD10-CM code. The cohorts included patients with (a) EHRs reported from data partners using U09.9 ICD10-CM code and (b) at least one EHR in each feature category. We analysed three cohorts: all patients (n = 2,190,579; diagnosed with long COVID = 17,036), inpatients (149,319; 3,295), and outpatients (2,041,260; 13,741). FINDINGS: LR and RF models yielded median AUROC of 0.76 and 0.75, respectively. Ablation study revealed that drugs had the highest influence on the prediction task. The SHAP method identified age, gender, cough, fatigue, albuterol, obesity, diabetes, and chronic lung disease as explanatory features. Models trained on data from one N3C partner and tested on data from the other partners had average AUROC of 0.75. INTERPRETATION: ML-based classification using EHR information from the acute infection period is effective in predicting long COVID. SHAP methods identified important features for prediction. Cross-site analysis demonstrated the generalizability of the proposed methodology. FUNDING: NCATS U24 TR002306, NCATS UL1 TR003015, Axle Informatics Subcontract: NCATS-P00438-B, NIH/NIDDK/OD, PSR2015-1720GVALE_01, G43C22001320007, and Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy Contract No. DE-AC02-05CH11231.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Tratamiento Farmacológico de COVID-19 , Aprendizaje Automático , Obesidad
8.
medRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37502882

RESUMEN

Objective: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (e.g., endometriosis, ovarian cyst, and uterine fibroids). Materials and Methods: We harmonized survey data from the Personalized Environment and Genes Study on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. Results: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. Discussion: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal, but can support hypothesis generation. Conclusion: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.

9.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36929917

RESUMEN

MOTIVATION: Advances in RNA sequencing technologies have achieved an unprecedented accuracy in the quantification of mRNA isoforms, but our knowledge of isoform-specific functions has lagged behind. There is a need to understand the functional consequences of differential splicing, which could be supported by the generation of accurate and comprehensive isoform-specific gene ontology annotations. RESULTS: We present isoform interpretation, a method that uses expectation-maximization to infer isoform-specific functions based on the relationship between sequence and functional isoform similarity. We predicted isoform-specific functional annotations for 85 617 isoforms of 17 900 protein-coding human genes spanning a range of 17 430 distinct gene ontology terms. Comparison with a gold-standard corpus of manually annotated human isoform functions showed that isoform interpretation significantly outperforms state-of-the-art competing methods. We provide experimental evidence that functionally related isoforms predicted by isoform interpretation show a higher degree of domain sharing and expression correlation than functionally related genes. We also show that isoform sequence similarity correlates better with inferred isoform function than with gene-level function. AVAILABILITY AND IMPLEMENTATION: Source code, documentation, and resource files are freely available under a GNU3 license at https://github.com/TheJacksonLaboratory/isopretEM and https://zenodo.org/record/7594321.


Asunto(s)
Motivación , Programas Informáticos , Humanos , Isoformas de Proteínas/genética , Empalme Alternativo , Análisis de Secuencia de ARN
10.
J Pers Med ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36675783

RESUMEN

A personalized approach is strongly advocated for treatment selection in Multiple Sclerosis patients due to the high number of available drugs. Machine learning methods proved to be valuable tools in the context of precision medicine. In the present work, we applied machine learning methods to identify a combined clinical and genetic signature of response to fingolimod that could support the prediction of drug response. Two cohorts of fingolimod-treated patients from Italy and France were enrolled and divided into training, validation, and test set. Random forest training and robust feature selection were performed in the first two sets respectively, and the independent test set was used to evaluate model performance. A genetic-only model and a combined clinical-genetic model were obtained. Overall, 381 patients were classified according to the NEDA-3 criterion at 2 years; we identified a genetic model, including 123 SNPs, that was able to predict fingolimod response with an AUROC= 0.65 in the independent test set. When combining clinical data, the model accuracy increased to an AUROC= 0.71. Integrating clinical and genetic data by means of machine learning methods can help in the prediction of response to fingolimod, even though further studies are required to definitely extend this approach to clinical applications.

11.
J Biomed Inform ; 139: 104295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716983

RESUMEN

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Asunto(s)
COVID-19 , Humanos , Algoritmos , Proyectos de Investigación , Sesgo , Probabilidad
12.
EBioMedicine ; 87: 104413, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36563487

RESUMEN

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Progresión de la Enfermedad , SARS-CoV-2
13.
Nat Comput Sci ; 3(6): 552-568, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38177435

RESUMEN

Graph representation learning methods opened new avenues for addressing complex, real-world problems represented by graphs. However, many graphs used in these applications comprise millions of nodes and billions of edges and are beyond the capabilities of current methods and software implementations. We present GRAPE (Graph Representation Learning, Prediction and Evaluation), a software resource for graph processing and embedding that is able to scale with big graphs by using specialized and smart data structures, algorithms, and a fast parallel implementation of random-walk-based methods. Compared with state-of-the-art software resources, GRAPE shows an improvement of orders of magnitude in empirical space and time complexity, as well as competitive edge- and node-label prediction performance. GRAPE comprises approximately 1.7 million well-documented lines of Python and Rust code and provides 69 node-embedding methods, 25 inference models, a collection of efficient graph-processing utilities, and over 80,000 graphs from the literature and other sources. Standardized interfaces allow a seamless integration of third-party libraries, while ready-to-use and modular pipelines permit an easy-to-use evaluation of graph-representation-learning methods, therefore also positioning GRAPE as a software resource that performs a fair comparison between methods and libraries for graph processing and embedding.


Asunto(s)
Bibliotecas , Vitis , Algoritmos , Programas Informáticos , Aprendizaje
14.
BMC Bioinformatics ; 23(Suppl 2): 154, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510125

RESUMEN

BACKGROUND: Cis-regulatory regions (CRRs) are non-coding regions of the DNA that fine control the spatio-temporal pattern of transcription; they are involved in a wide range of pivotal processes such as the development of specific cell-lines/tissues and the dynamic cell response to physiological stimuli. Recent studies showed that genetic variants occurring in CRRs are strongly correlated with pathogenicity or deleteriousness. Considering the central role of CRRs in the regulation of physiological and pathological conditions, the correct identification of CRRs and of their tissue-specific activity status through Machine Learning methods plays a major role in dissecting the impact of genetic variants on human diseases. Unfortunately, the problem is still open, though some promising results have been already reported by (deep) machine-learning based methods that predict active promoters and enhancers in specific tissues or cell lines by encoding epigenetic or spectral features directly extracted from DNA sequences. RESULTS: We present the experiments we performed to compare two Deep Neural Networks, a Feed-Forward Neural Network model working on epigenomic features, and a Convolutional Neural Network model working only on genomic sequence, targeted to the identification of enhancer- and promoter-activity in specific cell lines. While performing experiments to understand how the experimental setup influences the prediction performance of the methods, we particularly focused on (1) automatic model selection performed by Bayesian optimization and (2) exploring different data rebalancing setups for reducing negative unbalancing effects. CONCLUSIONS: Results show that (1) automatic model selection by Bayesian optimization improves the quality of the learner; (2) data rebalancing considerably impacts the prediction performance of the models; test set rebalancing may provide over-optimistic results, and should therefore be cautiously applied; (3) despite working on sequence data, convolutional models obtain performance close to those of feed forward models working on epigenomic information, which suggests that also sequence data carries informative content for CRR-activity prediction. We therefore suggest combining both models/data types in future works.


Asunto(s)
Aprendizaje Profundo , Humanos , Teorema de Bayes , Secuencias Reguladoras de Ácidos Nucleicos , Redes Neurales de la Computación , Aprendizaje Automático
15.
medRxiv ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380762

RESUMEN

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective EHR cohort study of 1,603,767 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 65 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There was a significant association between six categories and newly diagnosed anxiety, mood, and psychotic disorders, with odds ratios highest for cardiovascular (1.35, 1.27-1.42) PASC-AMs. Secondary analysis revealed that the proportions of 95 individual clinical features significantly differed between patients diagnosed with different psychiatric disorders. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings. Funding: NCATS U24 TR002306.

16.
Diabetes Res Clin Pract ; 194: 110157, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36400170

RESUMEN

AIMS: Studies suggest that metformin is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemics. We assessed if metformin is associated with reduced incidence of severe COVID-19 for patients with prediabetes or polycystic ovary syndrome (PCOS), common diseases that increase the risk of severe COVID-19. METHODS: This observational, retrospective study utilized EHR data from 52 hospitals for COVID-19 patients with PCOS or prediabetes treated with metformin or levothyroxine/ondansetron (controls). After balancing via inverse probability score weighting, associations with COVID-19 severity were assessed by logistic regression. RESULTS: In the prediabetes cohort, when compared to levothyroxine, metformin was associated with a significantly lower incidence of COVID-19 with "mild-ED" or worse (OR [95% CI]: 0.636, [0.455-0.888]) and "moderate" or worse severity (0.493 [0.339-0.718]). Compared to ondansetron, metformin was associated with lower incidence of "mild-ED" or worse severity (0.039 [0.026-0.057]), "moderate" or worse (0.045 [0.03-0.069]), "severe" or worse (0.183 [0.077-0.431]), and "mortality/hospice" (0.223 [0.071-0.694]). For PCOS, metformin showed no significant differences in severity compared to levothyroxine, but was associated with a significantly lower incidence of "mild-ED" or worse (0.101 [0.061-0.166]), and "moderate" or worse (0.094 [0.049-0.18]) COVID-19 outcome compared to ondansetron. CONCLUSIONS: Metformin use is associated with less severe COVID-19 in patients with prediabetes or PCOS.


Asunto(s)
COVID-19 , Metformina , Síndrome del Ovario Poliquístico , Estado Prediabético , Femenino , Humanos , Metformina/uso terapéutico , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/complicaciones , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/epidemiología , Estado Prediabético/complicaciones , Síndrome del Ovario Poliquístico/complicaciones , Hipoglucemiantes/uso terapéutico , Tiroxina
17.
medRxiv ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36093353

RESUMEN

Background: With the continuing COVID-19 pandemic, identifying medications that improve COVID-19 outcomes is crucial. Studies suggest that use of metformin, an oral antihyperglycemic, is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemic medications. Some patients without diabetes, including those with polycystic ovary syndrome (PCOS) and prediabetes, are prescribed metformin for off-label use, which provides an opportunity to further investigate the effect of metformin on COVID-19. Participants: In this observational, retrospective analysis, we leveraged the harmonized electronic health record data from 53 hospitals to construct cohorts of COVID-19 positive, metformin users without diabetes and propensity-weighted control users of levothyroxine (a medication for hypothyroidism that is not known to affect COVID-19 outcome) who had either PCOS (n = 282) or prediabetes (n = 3136). The primary outcome of interest was COVID-19 severity, which was classified as: mild, mild ED (emergency department), moderate, severe, or mortality/hospice. Results: In the prediabetes cohort, metformin use was associated with a lower rate of COVID-19 with severity of mild ED or worse (OR: 0.630, 95% CI 0.450 - 0.882, p < 0.05) and a lower rate of COVID-19 with severity of moderate or worse (OR: 0.490, 95% CI 0.336 - 0.715, p < 0.001). In patients with PCOS, we found no significant association between metformin use and COVID-19 severity, although the number of patients was relatively small. Conclusions: Metformin was associated with less severe COVID-19 in patients with prediabetes, as seen in previous studies of patients with diabetes. This is an important finding, since prediabetes affects between 19 and 38% of the US population, and COVID-19 is an ongoing public health emergency. Further observational and prospective studies will clarify the relationship between metformin and COVID-19 severity in patients with prediabetes, and whether metformin usage may reduce COVID-19 severity.

18.
medRxiv ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35665012

RESUMEN

Accurate stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning procedures. Using k-means clustering of this similarity matrix, we found six distinct clusters of PASC patients, each with distinct profiles of phenotypic abnormalities. There was a significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. Two of the clusters were associated with severe manifestations and displayed increased mortality. We assigned new patients from other healthcare centers to one of the six clusters on the basis of maximum semantic similarity to the original patients. We show that the identified clusters were generalizable across different hospital systems and that the increased mortality rate was consistently observed in two of the clusters. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC.

19.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35679533

RESUMEN

Patient similarity networks (PSNs), where patients are represented as nodes and their similarities as weighted edges, are being increasingly used in clinical research. These networks provide an insightful summary of the relationships among patients and can be exploited by inductive or transductive learning algorithms for the prediction of patient outcome, phenotype and disease risk. PSNs can also be easily visualized, thus offering a natural way to inspect complex heterogeneous patient data and providing some level of explainability of the predictions obtained by machine learning algorithms. The advent of high-throughput technologies, enabling us to acquire high-dimensional views of the same patients (e.g. omics data, laboratory data, imaging data), calls for the development of data fusion techniques for PSNs in order to leverage this rich heterogeneous information. In this article, we review existing methods for integrating multiple biomedical data views to construct PSNs, together with the different patient similarity measures that have been proposed. We also review methods that have appeared in the machine learning literature but have not yet been applied to PSNs, thus providing a resource to navigate the vast machine learning literature existing on this topic. In particular, we focus on methods that could be used to integrate very heterogeneous datasets, including multi-omics data as well as data derived from clinical information and medical imaging.


Asunto(s)
Algoritmos , Aprendizaje Automático
20.
Virol J ; 19(1): 84, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570298

RESUMEN

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. METHODS: A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. RESULTS: Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. CONCLUSIONS: Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Antiinflamatorios no Esteroideos/efectos adversos , Prueba de COVID-19 , Estudios de Cohortes , Humanos , Pandemias , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...