Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0303298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885224

RESUMEN

Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds. The bacteria were grown on two forms of brain heart infusion (BHI) medium: agar at six different temperatures (4, 10, 18, 25, 30, and 37°C) and on broth at 18°C. Multivariate data analysis approaches such as principal component analysis (PCA) and correlation analysis were used to study the difference in biochemical profiles induced by the cultivation conditions. The observed results indicated a strong correlation between FTIR spectra and the phylogenetic relationships among the studied bacteria. The most accurate taxonomy-aligned clustering was achieved with bacteria cultivated on agar. Cultivation on two forms of BHI medium provided biochemically different bacterial biomass. The impact of temperature on the total cellular biochemical profile of the studied bacteria was species-specific, however, similarly for all bacteria, lipid spectral region was the least affected while polysaccharide region was the most affected by different temperatures. The biggest temperature-triggered changes of the cell chemistry were detected for bacteria with a wide temperature tolerance such Pseudomonas lundensis strains and Acinetobacter lwoffii BIM B-1558.


Asunto(s)
Bacterias , Filogenia , Estanques , Regiones Antárticas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estanques/microbiología , Temperatura , Microbiología del Agua , Análisis de Componente Principal
2.
Res Microbiol ; 175(5-6): 104203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685370

RESUMEN

Lactococcus phages that belong to the genus Ceduovirus are among the three most frequently isolated phage groups infecting Lactococcus lactis starter strains in dairy plants. In this study, we characterized virulent Lactococcus phage BIM BV-114 isolated from industrial cheese brine in Belarus and identified as Ceduovirus. The bacteriophage demonstrated a relatively short lytic cycle (latent period of 23 ± 5 min, lysis time of 90 ± 5 min), high thermal stability (inactivation after 7 min at 95 °C in skimmed milk) and tolerance to UV radiation (inactivation time - 15 min), indicating adaptation for better persistence in dairy facilities. The genome of the phage BIM BV-114 (21 499 bp; 37 putative open reading frames) has a similar organization to that of other Ceduovirus phages. RLf1_00140 and RLf_00050 gene products, found in the early genes region, may be involved in the sensitivity of phage to the lactococcal abortive infection mechanisms AbiV and AbiQ, respectively. Furthermore, nucleotide deletion, observed in the middle region of the gene encoding putative tape measure protein (RLf1_00300), is possibly responsible for increased thermal tolerance of phage BIM BV-114. Together, these findings will contribute to a better knowledge of virulent Lactococcus phages and the development of effective methods of their control for dairy technologies.


Asunto(s)
Bacteriófagos , Queso , Genoma Viral , Rayos Ultravioleta , Queso/microbiología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Lactococcus lactis/virología , Lactococcus lactis/genética , Sales (Química) , Lactococcus/virología , Lactococcus/genética , Secuenciación Completa del Genoma , Sistemas de Lectura Abierta , Calor
3.
ACS Synth Biol ; 13(2): 428-448, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38326929

RESUMEN

The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Ingeniería Metabólica , ADN/metabolismo
4.
Environ Microbiol Rep ; 16(1): e13232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308519

RESUMEN

Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.


Asunto(s)
Ácidos Grasos , Lípidos de la Membrana , Temperatura , Lípidos de la Membrana/análisis , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Regiones Antárticas , Ácidos Grasos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias Gramnegativas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA