Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(10): 2111-2119.e4, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37116482

RESUMEN

Many marine mammal populations are recovering after long eras of exploitation.1,2 To what degree density-dependent body size declines in recovering species reflect a general response to increased resource competition is unknown. We examined skull size (as a proxy for body size), skull morphology, and foraging dynamics of the top marine predator, the California sea lion (Zalophus californianus), which have been steadily increasing over the last few decades and have approached or reached their carrying capacity in southern California.3 We show that, contrary to predictions, male California sea lions increased rather than decreased their average body size over a 46-year (1962-2008) recovery period. Larger males had proportionally longer oral cavities and more powerful bite strength, and their foraging niche expanded. Females between 1983 and 2007 maintained stable skull dimensions, but their isotopic niche was broader than contemporary males. Increased male body size is compatible with an intensification of density-dependent sexual selection for larger and more competitive individuals concurrent with an expanding foraging niche. High foraging variability among females would explain their body size stability during decades of population recovery. We demonstrate that body size reduction is not the universal response to population recovery in marine mammals and show that selective ecological dynamics could contribute to protecting populations against the increased density-dependent intraspecific competition. However, prey shifts associated with climate change will likely prevent California sea lions (and other marine mammals) from attaining these ecological dynamics, augmenting their vulnerability to resource competition and diminishing their capacity to overcome it.


Asunto(s)
Caniformia , Leones Marinos , Animales , Femenino , Masculino , Leones Marinos/fisiología , Conducta Alimentaria , Cetáceos , Tamaño Corporal
2.
Biol Lett ; 19(3): 20220534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36883314

RESUMEN

Body size and feeding morphology influence how animals partition themselves within communities. We tested the relationships among sex, body size, skull morphology and foraging in sympatric otariids (eared seals) from the eastern North Pacific Ocean, the most diverse otariid community in the world. We recorded skull measurements and stable carbon (δ13C) and nitrogen (δ15N) isotope values (proxies for foraging) from museum specimens in four sympatric species: California sea lions (Zalophus californianus), Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and Guadalupe fur seals (Arctocephalus townsendi). Species and sexes had statistical differences in size, skull morphology and foraging significantly affecting the δ13C values. Sea lions had higher δ13C values than fur seals, and males of all species had higher values than females. The δ15N values were correlated with species and feeding morphology; individuals with stronger bite forces had higher δ15N values. We also found a significant community-wide correlation between skull length (indicator of body length), and foraging, with larger individuals having nearshore habitat preferences, and consuming higher trophic level prey than smaller individuals. Still, there was no consistent association between these traits at the intraspecific level, indicating that other factors might account for foraging variability.


Asunto(s)
Lobos Marinos , Leones Marinos , Animales , Femenino , Masculino , Tamaño Corporal , Cabeza , Cráneo
3.
Sci Rep ; 12(1): 14246, 2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-35989343

RESUMEN

Desmostylia is an extinct clade of marine mammals with two major sub-clades, Desmostylidae and Paleoparadoxiidae, known from Oligocene to Miocene strata of the North Pacific coastline. Within Paleoparadoxiidae, three genera have been identified: Archaeoparadoxia, Paleoparadoxia, and Neoparadoxia. The latter taxon is the geochronologically youngest palaeoparadoxiid and Neoparadoxia is characterized by a comparatively larger body size, although it is known only from a few specimens within a short temporal and geographic range. Here we report the discovery of an isolated tooth, which we identify as Neoparadoxia cf. N. cecilialina, constituting only the second individual specimen of Neoparadoxia with preserved dentition yet reported. This specimen was collected near Corona, California, USA, and we attribute it to the "Topanga" Formation, extending the geographic range of this taxon in Southern California. While the exact geographic locality was not recorded when it was collected in 1913, we establish two potential localities based on associated hand-written museum label and new stratigraphic information. Although initially identified as Desmostylus hesperus, this specimen of Neoparadoxia was collected 10 years before the first named paleoparadoxiid from Japan. We expect that description of more complete desmostylian material from elsewhere in Southern California will clarify the taxonomic richness and paleoecological role of this clade in Cenozoic marine mammal assemblages.


Asunto(s)
Caniformia , Animales , Tamaño Corporal , Japón , Filogenia
4.
Nat Ecol Evol ; 5(9): 1213-1223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373620

RESUMEN

Racial and ethnic discrimination persist in science, technology, engineering and mathematics fields, including ecology, evolution and conservation biology (EECB) and related disciplines. Marginalization and oppression as a result of institutional and structural racism continue to create barriers to inclusion for Black people, Indigenous people and people of colour (BIPOC), and remnants of historic racist policies and pseudoscientific theories continue to plague these fields. Many academic EECB departments seek concrete ways to improve the climate and implement anti-racist policies in their teaching, training and research activities. We present a toolkit of evidence-based interventions for academic EECB departments to foster anti-racism in three areas: in the classroom; within research laboratories; and department wide. To spark restorative discussion and action in these areas, we summarize EECB's racist and ethnocentric histories, as well as current systemic problems that marginalize non-white groups. Finally, we present ways that EECB departments can collectively address shortcomings in equity and inclusion by implementing anti-racism, and provide a positive model for other departments and disciplines.


Asunto(s)
Racismo , Negro o Afroamericano , Ecología , Ingeniería , Humanos , Grupos de Población
5.
PeerJ ; 8: e9665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32953258

RESUMEN

Elephant seals (Mirounga spp.) are the largest living pinnipeds, and the spatial scales of their ecology, with dives over 1 km in depth and foraging trips over 10,000 km long, are unrivalled by their near relatives. Here we report the discovery of an incomplete Holocene age Southern elephant seal (M. leonina) rostrum from Indiana, USA. The surviving material are two casts of the original specimen, which was collected in a construction excavation close to the Wabash River near Lafayette, Indiana. The original specimen was mostly destroyed for radiometric dating analyses in the 1970s, which resulted in an age of 1,260 ± 90 years before the present. The existence of sediments in the original specimen suggests some type of post depositional fluvial transportation. The prevalent evidence suggests that this male Southern elephant seal crossed the equator and the Gulf of Mexico, and then entered the Mississippi River system, stranding far upriver in Indiana or adjacent areas, similar to other reported examples of lost marine mammals in freshwater systems. Based on potential cut marks, we cannot exclude human-mediated transportation or scavenging by Indigenous peoples as a contributing factor of this occurrence. The material reported here represents by far the northernmost occurrence of a Southern elephant seal in the Northern Hemisphere ever recorded. The unusual occurrence of a top marine predator >1,000 km from the closest marine effluent as a potential extreme case of dispersal emphasizes how marine invasions of freshwater systems have happened frequently through historical (and likely geological) time.

6.
Biol Lett ; 15(5): 20190108, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31064312

RESUMEN

True seals (crown Phocidae) originated during the late Oligocene-early Miocene (approx. 27-20 Ma) in the North Atlantic/Mediterranean region, with later (middle Miocene, approx. 16-11 Ma) dispersal events to the South Atlantic and South Pacific. Contrasting with other pinnipeds, the fossil record of phocids from the North Pacific region is scarce and restricted to the Pleistocene. Here we present the oldest fossil record of crown phocids, monachines (monk seals), from the North Pacific region. The specimens were collected from the upper Monterey Formation in Southern California and are dated to 8.5-7.1 Ma, predating the previously oldest known record by at least 7 Ma. This record provides new insights into the early biogeographic history of phocids in the North Pacific and is consistent with a northward dispersal of monk seals (monachines), which has been recognized for other groups of marine mammals. Alternatively, this finding may correspond with a westward dispersal through the Central American Seaway of some ancestor of the Hawaiian monk seal. This record increases the taxonomic richness of the Monterey pinniped assemblage to five taxa, making it a fairly diverse fossil assemblage, but also constitutes the oldest record of sympatry among all three extant pinniped crown clades.


Asunto(s)
Caniformia , Phocidae , Animales , California , Fósiles , Filogenia
7.
PeerJ ; 5: e3123, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30038848

RESUMEN

While large mass mortality events (MMEs) are well known for toothed whales, they have been rare in baleen whales due to their less gregarious behavior. Although in most cases the cause of mortality has not been conclusively identified, some baleen whale mortality events have been linked to bio-oceanographic conditions, such as harmful algal blooms (HABs). In Southern Chile, HABs can be triggered by the ocean-atmosphere phenomenon El Niño. The frequency of the strongest El Niño events is increasing due to climate change. In March 2015, by far the largest reported mass mortality of baleen whales took place in a gulf in Southern Chile. Here, we show that the synchronous death of at least 343, primarily sei whales can be attributed to HABs during a building El Niño. Although considered an oceanic species, the sei whales died while feeding near to shore in previously unknown large aggregations. This provides evidence of new feeding grounds for the species. The combination of older and newer remains of whales in the same area indicate that MMEs have occurred more than once in recent years. Large HABs and reports of marine mammal MMEs along the Northeast Pacific coast may indicate similar processes in both hemispheres. Increasing MMEs through HABs may become a serious concern in the conservation of endangered whale species.

8.
Proc Biol Sci ; 281(1781): 20133316, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24573855

RESUMEN

Marine mammal mass strandings have occurred for millions of years, but their origins defy singular explanations. Beyond human causes, mass strandings have been attributed to herding behaviour, large-scale oceanographic fronts and harmful algal blooms (HABs). Because algal toxins cause organ failure in marine mammals, HABs are the most common mass stranding agent with broad geographical and widespread taxonomic impact. Toxin-mediated mortalities in marine food webs have the potential to occur over geological timescales, but direct evidence for their antiquity has been lacking. Here, we describe an unusually dense accumulation of fossil marine vertebrates from Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths, walrus-whales and predatory bony fish. Marine mammal skeletons are distributed in four discrete horizons at the site, representing a recurring accumulation mechanism. Taphonomic analysis points to strong spatial focusing with a rapid death mechanism at sea, before being buried on a barrier-protected supratidal flat. In modern settings, HABs are the only known natural cause for such repeated, multispecies accumulations. This proposed agent suggests that upwelling zones elsewhere in the world should preserve fossil marine vertebrate accumulations in similar modes and densities.


Asunto(s)
Organismos Acuáticos , Fósiles , Floraciones de Algas Nocivas , Mamíferos , Animales , Chile , Microscopía Electrónica de Rastreo , Océano Pacífico , Especificidad de la Especie , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA