Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; : e13945, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523313

RESUMEN

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.

2.
Fish Shellfish Immunol ; 144: 109244, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000653

RESUMEN

Cell-mediated cytotoxicity is a complex immune mechanism that involves the release of several killing molecules, being perforin (PRF) one of the most important effector players. Perforin is synthesized by T lymphocytes and natural killer cells in mammals and responsible for the formation of pores on the target cell membrane during the killing process. Although perforin has been extensively studied in higher vertebrates, this knowledge is very limited in fish. Therefore, in this study we have identified four prf genes in European sea bass (Dicentrarchus labrax) and evaluated their mRNA levels. All sea bass prf genes showed the typical and conserved domains of its human orthologue and were closely clustered by the phylogenetic analysis. In addition, all genes showed constitutive and ubiquitous tissular expression, being prf1.9 gene the most highly expressed in immune tissues. Subsequently, in vitro stimulation of head-kidney (HK) cells with phytohemagglutinin, a T-cell activator, showed an increase of all prf gene levels, except for prf1.3 gene. European sea bass HK cells increased the transcription of prf1.2 and prf1.9 during the innate cell-mediated cytotoxic activity against xenogeneic target cells. In addition, sea bass infected with nodavirus (NNV) showed a similar expression pattern of all prf in HK and brain at 15 days post-infection, except for prf1.3 gene and in the gonad. Finally, the use of a polyclonal antibody against PRF1.9 showed an increase of positive cells in HK, brain and gonad from NNV-infected fish. Taken together, the data seem to indicate that all prf genes, except prf1.3, appear to be involved in the European sea bass immunity, and probably in the cell-mediated cytotoxic response, with PRF1.9 playing the most important role against nodavirus. The involvement of the PRFs and the CMC activity in the vertical transmission success of the virus is also discussed.


Asunto(s)
Lubina , Enfermedades de los Peces , Humanos , Animales , Filogenia , Perforina/genética , Mamíferos
3.
Animals (Basel) ; 13(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766303

RESUMEN

Acquiring immunocompetence is essential in the development of fish embryos, as they are exposed to environmental pathogens even before they are fertilized. Despite the importance of the antimicrobial function as the first line of defense against foreign microorganisms, little knowledge is available about its role in larval development. In vertebrates, transgenerational immune priming influences the acquisition of immunocompetence of specimens, regulating the selective allocation of nongenetic resources to their progeny and modulating their development. In this work, we primed teleost European sea bass broodstock females with a viral protein expression vector in order to evaluate the innate immunity development of their offspring. Several antimicrobial functions, the pattern of expression of gene coding for different antimicrobial peptides (AMPs), and their protein levels, were evaluated in eggs and larvae during development. Our data determined the presence of antimicrobial proteins of maternal origin in eggs, and that female vaccination increases antimicrobial activities and the transcription and synthesis of AMPs during larval development.

4.
Pathogens ; 10(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34959520

RESUMEN

Viral encephalopathy and retinopathy caused by nervous necrosis virus (NNV), is one of the most threatening viral diseases affecting marine fish worldwide. In vitro propagation of NNV strains is essential for the design of effective control measures. In the present study we analysed both the susceptibility and the permissiveness of five fish cell lines (E-11, GF-1, SAF-1, DLB-1, and SaB-1) to three NNV strains (one RGNNV, one SJNNV, and one reassortant RGNNV/SJNNV). E-11 and DLB-1 were demonstrated to be highly susceptible to NNV strains, with average adsorption efficiency (AE) values higher than 90%. SAF-1 also showed high susceptibility (AE 88%), whereas GF-1 can be regarded as moderately susceptible (AE around 50%). On the contrary, SaB-1 can be considered a poorly susceptible cell line (AE values below 20%). E-11 and GF-1 cell lines provided the highest production rates for RGNNV and RG/SJ (around 103) and both cell lines can be regarded as fully permissive for these viral types. However, the SJNNV production rate in GF-1 was only 17.8 and therefore this cell line should be considered semi-permissive for this genotype. In SAF-1 cells, moderate viral replication was recorded but differences in intracellular and extracellular production suggest that viral progeny was not efficiently released. In DLB-1 and SaB-1 the final viral titres obtained in E-11 were lower than those of the inoculum. However, RNA1 synthesis values seem to indicate that RGNNV replication in DLB-1 and SAF-1 could have been underestimated, probably due to a poor adaptation of the virus grown in these cell lines to E-11. Based on all these results, E-11 seems to be the most appropriate cell for in vitro culture of RGNNV, SJNNV, and reassortant strains.

5.
Vaccines (Basel) ; 9(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064461

RESUMEN

Nervous necrosis virus (NNV), the causative agent of viral encephalopathy and retinopathy (VER), is one of the most threatening viruses affecting marine and freshwater fish species worldwide. Senegalese sole is a promising fish species in Mediterranean aquaculture but also highly susceptible to NNV and VER outbreaks, that puts its farming at risk. The development of vaccines for aquaculture is one of best tools to prevent viral spread and sudden outbreaks, and virus inactivation is the simplest and most cost-effective method available. In this work, we have designed two inactivated vaccines based on the use of formalin or binary ethylenimine (BEI) to inactivate a reassortant NNV strain. After vaccination, the BEI-inactivated vaccine triggered the production of specific IgM-NNV antibodies and stimulated innate and adaptive immune responses at transcriptional level (rtp3, mx, mhcii and tcrb coding genes). Moreover, it partially improved survival after an NNV in vivo challenge, reducing the mid-term viral load and avoiding the down-regulation of immune response post-challenge. On the other hand, the formalin-inactivated vaccine improved the survival of fish upon infection without inducing the production of IgM-NNV antibodies and only stimulating the expression of herc4 and mhcii genes (in head-kidney and brain, respectively) during the vaccination period; this suggests that other immune-related pathways may be involved in the partial protection provoked. Although these vaccines against NNV showed encouraging results, further studies are needed to improve sole protection and to fully understand the underlying immune mechanism.

6.
Antiviral Res ; 192: 105104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087253

RESUMEN

Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in the cell-mediated cytotoxic (CMC) response. This molecule is suggested as a pivotal molecule involved in the defence upon nervous necrosis virus (NNV), an epizootic virus provoking serious problems in welfare and health status in Asian and Mediterranean fish destined to human consumption. Having proved that NK-lysin derived peptides (NKLPs) have a direct antiviral activity against NNV in vitro, we aimed to evaluate their potential use as a prophylactic treatment for European sea bass (Dicentrarchus labrax), one of the most susceptible cultured-fish species. Thus, intramuscular injection of synthetic NKLPs resulted in a very low transcriptional response of some innate and adaptive immune markers. However, the injection of NKLPs ameliorated disease signs and increased fish survival upon challenge with pathogenic NNV. Although NKLPs showed promising results in treatments against NNV, more efforts are needed to understand their mechanisms of action and their applicability to the aquaculture industry.


Asunto(s)
Lubina/virología , Encefalopatías/veterinaria , Enfermedades de los Peces/prevención & control , Nodaviridae/efectos de los fármacos , Péptidos/uso terapéutico , Proteolípidos/uso terapéutico , Enfermedades de la Retina/veterinaria , Animales , Antivirales/administración & dosificación , Antivirales/síntesis química , Acuicultura , Encefalopatías/mortalidad , Encefalopatías/prevención & control , Encefalopatías/virología , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Inyecciones Intramusculares , Nodaviridae/patogenicidad , Péptidos/administración & dosificación , Péptidos/síntesis química , Proteolípidos/administración & dosificación , Proteolípidos/síntesis química , Infecciones por Virus ARN/mortalidad , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Enfermedades de la Retina/mortalidad , Enfermedades de la Retina/prevención & control , Enfermedades de la Retina/virología , Tasa de Supervivencia
7.
Sci Rep ; 10(1): 7966, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409650

RESUMEN

17α-ethynilestradiol (EE2) and tamoxifen (Tmx) are pollutants world-wide distributed in aquatic environments. Gilthead seabream, Sparus aurata L., is highlighted as a species model of intensively culture in anthropogenic disturbed environments. The effects of these pollutants on gilthead seabream reproduction and some immune responses have been described but, the humoral innate antimicrobial activities have never received attention. In this work we analysed the latest in the plasma of gilthead seabream males of different ages and reproductive stages treated with 0, 2.5, 5 or 50 µg EE2 or 100 µg Tmx g-1 food during different times of exposure and of reverting to commercial diet (recovery). The peroxidase and protease activities decreased as the spermatogenesis of the first reproductive cycle (RC) proceeded in control fish. However, only protease and antiprotease activities showed different level at different stages of the second RC in control fish, but showed scarce disruption in fish treated with EE2 or Tmx. Peroxidase and bactericide activities are more sensitive to EE2, than to Tmx. The effects induced by EE2 varied depending on the activity analyzed, the dose and the time of exposure and the reproductive stage and the age of the specimens.


Asunto(s)
Resistencia a la Enfermedad/efectos de los fármacos , Disruptores Endocrinos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inmunidad Humoral/efectos de los fármacos , Dorada/fisiología , Animales , Enfermedades de los Peces/etiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Masculino , Oxidación-Reducción , Reproducción/efectos de los fármacos , Factores Sexuales , Espermatogénesis/efectos de los fármacos , Factores de Tiempo
8.
Fish Shellfish Immunol ; 99: 435-441, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32088283

RESUMEN

Fish NK-lysin (NKL), an orthologous to human granulysin, exerts a dual role as an antimicrobial peptide (AMP) and as a direct executor of T cytotoxic and natural killer cells during the cell-mediated cytotoxic (CMC) response. Although its best-known function is as AMP against bacteria, recent studies point to a special role of NKL in antiviral responses. Nodavirus (NNV) is a spreading threat in Mediterranean aquaculture. In this study, we have identified and compared the expression pattern of European sea bass and gilthead seabream NKL and evaluated its transcription in different tissues and its regulation in head-kidney leucocyte (HKLs) stimulated in vitro with different immunostimulants, under CMC response and upon an in vivo infection with NNV. Our results showed that nkl transcription is highly expressed in spleen, thymus and skin with species-specific differences. Interestingly, the expression pattern in both species was very different upon treatment. While sea bass nkl transcription was increased in HKLs by the T mitogen phytohemagglutinin all the stimulators inhibited it in seabream HKLs. Similar results occurred in NNV-infected fish where the transcription was increased in sea bass tissues and down-regulated in seabream. Curiously, during CMC assays, nkl transcription was significantly increased in seabream HKLs against NNV-infected fish cell lines but this was not observed in sea bass leucocytes. The potential role of NKL as CMC effector molecule or as AMP in fish will be discussed.


Asunto(s)
Lubina/inmunología , Proteínas de Peces/inmunología , Proteolípidos/inmunología , Infecciones por Virus ARN/veterinaria , Dorada/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Acuicultura , Lubina/genética , Línea Celular , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Expresión Génica , Riñón Cefálico/citología , Riñón Cefálico/inmunología , Inmunidad Innata , Nodaviridae , Proteolípidos/genética , Infecciones por Virus ARN/inmunología , Dorada/genética
9.
Dev Comp Immunol ; 103: 103516, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31593708

RESUMEN

Antimicrobial peptides (AMPs) are considered to be amongst the most powerful tools for the fight against pathogens in fish, since they form part of the innate immune response, which is especially vital in eggs and early larval stages, when the immune system is developing. The fish responsible for a large part of the profits in Mediterranean aquaculture is European sea bass (Dicentrarchus labrax), a species greatly susceptible to nodavirus (NNV), especially in the larval and juvenile stages. In this work, polyclonal antibodies were developed and used to detect and quantify NK-lysin, dicentracin and hepcidin AMPs in European sea bass eggs and during larval development, as well as to evaluate their regulation in juvenile specimens upon NNV infection. Basal and detectable levels of all the AMPs studied were present in eggs, confirming the maternal transfer of peptides, which increased in one or two waves during larval development up to 69 days post-fertilization. After NNV infection, the mRNA of all the AMPs analysed was up-regulated five days after infection in most of the tissues, whilst peptide quantification of all three AMPs decreased in the brain, the target tissue for NNV, but increased in the head-kidney 5 days after infection. Further research should be carried out to ascertain the role of AMPs in fish innate immunity and to understand how NNV evades the immune response to be disseminated.


Asunto(s)
Lubina/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Hepcidinas/inmunología , Proteolípidos/inmunología , Infecciones por Virus ARN/veterinaria , Animales , Péptidos Catiónicos Antimicrobianos/inmunología , Lubina/virología , Inmunidad Innata/inmunología , Nodaviridae , Infecciones por Virus ARN/inmunología
10.
Fish Shellfish Immunol ; 98: 720-727, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31730928

RESUMEN

Antimicrobial peptides (AMPs) form part of the innate immune response, which is of vital importance in fish, especially in eggs and early larval stages. Compared to antibiotics, AMPs show action against a wider spectrum of pathogens, including viruses, fungi and parasites, are more friendly to the environment, and do not seem to generate resistance in bacteria. Thus, we have tested in vitro the potential use of several synthetic peptides as antimicrobial agents in aquaculture: frog Caerin1.1, European sea bass Dicentracin (Dic) and NK-lysin peptides (NKLPs) and sole NKLP27. Our results demonstrate that the highest bactericidal activity against both human and fish pathogens was obtained with Caerin1.1 followed by sea bass Dic and NKLPs, having the sea bass NKLP20.2 none to negligible activity. Interestingly, Aeromonas salmonicida was refractory to all the fish peptides tested. Regarding the antiviral activity, synthetic peptides were able to inhibit the viral infection of nodavirus (NNV), viral septicaemia haemorrhagic virus (VHSV), infectious pancreatic necrosis virus (IPNV) and spring viremia carp virus (SVCV), which are some of the most devastating virus for aquaculture. However, their effectiveness was highly dependent on the type of virus. Strikingly, IPNV resulted the most resistant virus since Caeerin1.1 and sea bass NKLP20.2 were unable to reduce its titre and the other peptides tested only reduced it to values in the 43-78% range. These data demonstrate that synthetic peptides have great antibacterial and antiviral in vitro activity against important fish pathogens and point to their use as potential therapeutic agents in aquaculture.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Proteínas de Peces/farmacología , Animales , Anuros , Lubina , Peces Planos , Proteolípidos/farmacología
11.
Front Immunol ; 10: 2579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736981

RESUMEN

Granzymes (Gzm) are serine proteases, contained into the secretory granules of cytotoxic cells, responsible for the cell-mediated cytotoxicity (CMC) against tumor cells and intracellular pathogens such as virus and bacteria. In fish, they have received little attention to their existence, classification or functional characterization. Therefore, we aimed to identify and evaluate their functional and transcriptomic relevance in the innate CMC activity of two relevant teleost fish species, gilthead seabream and European sea bass. Afterwards, we wanted to focus on their regulation upon nodavirus (NNV) infection, a virus that causes great mortalities to sea bass specimens while seabream is resistant. In this study, we have identified genes encoding GzmA and GzmB in both seabream and sea bass, as well as GzmM in seabream, which showed good phylogenetic relation to their mammalian orthologs. In addition, we found enzymatic activity related to tryptase (GzmA and/or GzmK), aspartase (GzmB), metase (GzmM), or chymase (GzmH) in resting head-kidney leucocytes (HKLs), with the following order of activity: GzmA/K ~ GzmM >> GzmH >>> GzmB. In addition, during innate CMC assays consisting on HKLs exposed to either mock- or NNV-infected target cells, though all the granzyme transcripts were increased only the tryptase activity did. Thus, our data suggest a high functional activity of GzmA/K in the innate CMC and a marginal one for GzmB. Moreover, GzmB activity was detected into target cells during the CMC assays. However, the percentage of target cells with GzmB activity after the CMC assays was about 10-fold lower than the death target cells, demonstrating that GzmB is not the main inductor of cell death. Moreover, in in vivo infection with NNV, gzm transcription is differently regulated depending on the fish species, genes and tissues. However, the immunohistochemistry study revealed an increased number of GzmB stained cells and areas in the brain of seabream after NNV infection, which was mainly associated with the lesions detected. Further studies are needed to ascertain the molecular nature, biological function and implication of fish granzymes in the CMC activity, and in the antiviral defense in particular.


Asunto(s)
Lubina/inmunología , Proteínas de Peces/inmunología , Granzimas/inmunología , Inmunidad Innata , Dorada/inmunología , Animales , Lubina/genética , Lubina/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Granzimas/genética , Nodaviridae/inmunología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Dorada/genética , Dorada/virología
12.
Fish Shellfish Immunol ; 87: 410-413, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30703553

RESUMEN

NK-lysin, despite being a direct effector of cytotoxic T and natural killer cells, is an antimicrobial peptide (AMP) with known antibacterial function in vertebrates and so in fish. Its presence has been described in different tissues of teleost fish. One of the strongest antimicrobial barriers in fish is skin-secreted mucus; however, this mucus has been found to contain only a small number of AMPs. The present study describes for the first time the constitutive expression of NK-lysin in Atlantic salmon (Salmo salar) mucus produced by the skin, recording the AMP at a higher concentration than in serum with greater bacteriostatic activity. Hepcidin may be involved to a greater extent in systemic responses since it was expressed to a higher degree in serum which was more potent for alternative complement and peroxidase activities.


Asunto(s)
Antibacterianos/inmunología , Hepcidinas/inmunología , Moco/inmunología , Proteolípidos/inmunología , Salmo salar/inmunología , Animales , Antibacterianos/biosíntesis , Hepcidinas/biosíntesis , Hepcidinas/sangre , Inmunidad Innata , Proteolípidos/biosíntesis , Piel/metabolismo
13.
Dev Comp Immunol ; 86: 171-179, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29758230

RESUMEN

Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge. First, iNNV failed to replicate in cell cultures and its intraperitoneal administration to sea bass juveniles also failed to produce fish mortality and induction of the type I interferon (IFN) pathway, indicating that the NNV was efficiently inactivated. By contrast, iNNV administration induced significant serum non-specific antimicrobial activity as well as a specific antiviral activity and immunoglobulin M (IgM) titres against NNV. Interestingly, few changes were observed at transcriptional level in genes related to either innate or adaptive immunity, suggesting that iNNV could be modulating the immune response at protein or functional level. In addition, the iNNV vaccinated group showed improved survival, reaching a relative survival percentage of 57.9%. Moreover, challenged fish that had been vaccinated presented increased serum antibacterial, antiviral and IgM titres, as well as the higher transcription of mhc1a, ifn, isg15 and cd8a genes in brain, while in the head-kidney the transcription of mhc1a, mhc2b and cd8a was down-regulated and mx, isg15 and tcrb was up-regulated. Although the UV-inactivated vaccine against NNV showed promising results, more effort should be addressed to improving this prophylactic method by increasing our understanding of its action mechanisms, thus enabling the mortality rate of NNV to be further reduced.


Asunto(s)
Lubina/inmunología , Nodaviridae/inmunología , Infecciones por Virus ARN/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Inmunidad Adaptativa/inmunología , Animales , Acuicultura/métodos , Lubina/virología , Encéfalo/inmunología , Encéfalo/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Riñón Cefálico/inmunología , Riñón Cefálico/virología , Inmunidad Innata/inmunología , Inmunoglobulina M/inmunología , Interferón Tipo I/inmunología , Infecciones por Virus ARN/virología , Vacunación/métodos
14.
Fish Shellfish Immunol ; 74: 627-636, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29414318

RESUMEN

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina. Thus, for the first time, we intravitreally infected healthy specimens of European sea bass (Dicentrarchus labrax) with NNV with the aim of characterizing the immune response in the retina. Ultrastructural analysis detected important retinal injuries and structure degradation, including pycnosis, hydropic degeneration and vacuolization in some cell layers as well as myelin sheaths in the optic nerve fibres. Immunohistochemistry demonstrated that NNV replicated in the eyes. Regarding retinal immunity, NNV infection elicited the transcription of genes encoding proteins involved in the interferon (IFN) and cell-mediated cytotoxicity (CMC) responses as well as B and T cell markers, demonstrating that viral replication influences innate and adaptive responses. Further studies are needed to understand the retina immunity and whether the main retinal function, vision, is affected by nodavirus.


Asunto(s)
Lubina/genética , Lubina/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Retina/inmunología , Animales , Enfermedades de los Peces/virología , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retina/virología , Enfermedades de la Retina/inmunología , Enfermedades de la Retina/virología
15.
Sci Rep ; 7(1): 15396, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133947

RESUMEN

Nervous necrosis virus (NNV) causes high mortalities in several marine species. We aimed to evaluate the innate cell-mediated cytotoxic (CMC) activity of head-kidney leucocytes (HKLs) isolated from naïve European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), a very susceptible and resistant fish species to NNV, respectively, against fish cell lines infected with NNV. Seabream HKLs showed significantly increased innate CMC activity against NNV-infected cells, compared to those uninfected, while sea bass HKLs failed to do so. Thus, we performed a RNA-seq study to identify genes related to the CMC activity of sea bass leucocytes. Thus, we found that sea bass HKLs incubated with DLB-1 cells alone (CMC_DLB1) or with NNV-infected DLB-1 cells (CMC_DLB1-NNV) showed very similar transcriptomic profiles and the GO analysis revealed that most of the up-regulated genes were related to immunity. Strikingly, when the CMC samples with and without NNV were compared, GO analysis revealed that most of the up-regulated genes in CMC_DLB1-NNV samples were related to metabolism and very few to immunity. This is also in agreement with the functional data. These data point to the escape of CMC activity by NNV infection as an important factor involved in the high susceptibility to nodavirus infections of European sea bass.


Asunto(s)
Lubina , Enfermedades de los Peces , Inmunidad Innata , Leucocitos/inmunología , Nodaviridae/inmunología , Infecciones por Virus ARN/inmunología , Animales , Lubina/inmunología , Lubina/virología , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Dorada/inmunología , Dorada/virología
16.
Fish Shellfish Immunol ; 57: 107-115, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27523279

RESUMEN

Histones (H1 to H4) are the primary proteins which mediate the folding of DNA into chromatin; however, and in addition to this function, histones have been also related to antimicrobial peptides (AMPs) activity in vertebrates, in fact, mammalian H1 is mobilized as part as the anti-viral immune response. In fish, histones with AMP activity have been isolated and characterized mainly from skin and gonads. One of most threatening pathogens for wild and cultured fish species nowadays is nodavirus (NNV), which target tissues are the brain and retina, but it is also able to colonize the gonad and display vertical transmission. Taking all this into account we have identified the h1 and h2b coding sequences in European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) fish species and studied their pattern of expression under naïve conditions and NNV in vivo infection. The data obtained prompted us to study their role on the immune response of gonad and head-kidney leucocytes upon viral (NNV), bacteria (Vibrio anguillarum or Photobacterium damselae), pathogen-associated molecular patterns (PAMPs) or mitogens stimulation. The h1 and h2b genes are expressed in a wide range of tissues and their expression is modify by infection or other immune stimuli, but further studies will be needed to determine the significance of these changes. These results suggest that h1 expression is related to the immune response against NNV in the brain, while h2b transcription seems to be more important in the head-kidney. Moreover, the potential role of histones as anti-viral agents is suggested and further characterization is in progress.


Asunto(s)
Lubina , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Histonas/genética , Inmunidad Innata , Dorada , Transcripción Genética , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Histonas/metabolismo , Mitógenos/farmacología , Nodaviridae/fisiología , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Photobacterium/fisiología , Filogenia , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Distribución Aleatoria , Análisis de Secuencia de ADN/veterinaria , Distribución Tisular , Vibrio/fisiología , Vibriosis/genética , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria
17.
Dev Comp Immunol ; 65: 64-72, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27370973

RESUMEN

Vaccines for fish need to be improved for the aquaculture sector, with DNA vaccines and the oral administration route providing the most promising improvements. In this study, we have created an oral chitosan-encapsulated DNA vaccine (CP-pNNV) for the nodavirus (NNV) in order to protect the very susceptible European sea bass (Dicentrarchus labrax). Our data show that the oral CP-pNNV vaccine failed to induce serum circulating or neutralizing specific antibodies (immunoglobulin M) or to up-regulate their gene expression in the posterior gut. However, the vaccine up-regulated the expression of genes related to the cell-mediated cytotoxicity (CMC; tcrb and cd8a) and the interferon pathway (IFN; ifn, mx and ifng). In addition, 3 months after vaccination, challenged fish showed a retarded onset of fish death and lower cumulative mortality with a relative survival of 45%. Thus, we created a chitosan-encapsulated DNA vaccine against NNV that is partly protective to European sea bass juveniles and up-regulates the transcription of genes related to CMC and IFN. However, further studies are needed to improve the anti-NNV vaccine and to understand its mechanisms.


Asunto(s)
Lubina/inmunología , Quitosano/inmunología , Enfermedades de los Peces/inmunología , Intestinos/inmunología , Nodaviridae/inmunología , Infecciones por Virus ARN/inmunología , Vacunas de ADN/inmunología , Administración Oral , Animales , Células Cultivadas , Citotoxicidad Inmunológica/genética , Inmunidad Celular/genética , Interferones/genética , Intestinos/virología , Transcripción Genética , Vacunación
18.
Biology (Basel) ; 4(4): 860-80, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26633533

RESUMEN

Peroxiredoxins (Prxs) are a family of antioxidant enzymes that protect cells from oxidative damage. In addition, Prxs may act as modulators of inflammation, protect against cell death and tumour progression, and facilitate tissue repair after damage. The most studied roles of Prx1 and Prx2 are immunological. Here we present a review on the effects of some immunostimulant treatments and bacterial, viral, or parasitic infections on the expression of fish Prxs at the gene and/or protein level, and point to their important role in immunity. The Prxs show antioxidant activity as well as a protective effect against infection. Some preliminary data are presented about the role of fish Prx1 and Prx2 in virus resistance although further studies are needed before the role of fish Prx in immunity can be definitively defined.

19.
PLoS One ; 10(12): e0145131, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26691348

RESUMEN

Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17ß-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the cases.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Dorada , Testículo , Replicación Viral/inmunología , Animales , Lubina/inmunología , Lubina/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Masculino , Reproducción/inmunología , Dorada/inmunología , Dorada/virología , Testículo/inmunología , Testículo/virología
20.
J Gen Virol ; 96(8): 2176-2187, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25918238

RESUMEN

One of the most powerful innate immune responses against viruses is mediated by type I IFN. In teleost fish, it is known that virus infection triggers the expression of ifn and many IFN-stimulated genes, but the viral RNA sensors and mediators leading to IFN production are scarcely known. Thus, we have searched for the presence of these genes in gilt-head sea bream (Sparus aurata) and European sea bass (Dicentrarchus labrax), and evaluated their expression after infection with viral nervous necrosis virus (VNNV) in the brain, the main viral target tissue, and the gonad, used to transmit the virus vertically. In sea bream, a fish species resistant to the VNNV strain used, we found an upregulation of the genes encoding MDA5 (melanoma differentiation-associated gene 5), TBK1 (TANK-binding kinase 1), IRF3 (IFN regulatory factor 3), IFN, Mx [myxovirus (influenza) resistance protein] and PKR (dsRNA-dependent protein kinase receptor) proteins in the brain, which were unaltered in the gonad and could favour the dissemination by gonad fluids or gametes. Strikingly, in European sea bass, a very susceptible species, we also identified, transcripts coding for LGP2 (Laboratory of Genetics and Physiology 2), MAVS (mitochondrial antiviral signalling), TRAF3 (TNF receptor-associated factor 3), TANK (TRAF family member-associated NFκB activator) and IRF7 (IFN regulatory factor 7), and found that all the genes analysed were upregulated in the gonad, but only mda5, lgp2, irf3, mx and pkr were upregulated in the brain. These findings supported the notion that the European sea bass brain innate immune response is unable to clear the virus and pointed to the importance of gonad immunity to control the dissemination of VNNV to the progeny--an aspect that is worth investigating in aquatic animals.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Gónadas/inmunología , Factor 3 Regulador del Interferón/inmunología , Interferones/inmunología , Nodaviridae/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/veterinaria , Animales , Lubina , Encéfalo/inmunología , Encéfalo/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Gónadas/virología , Inmunidad Innata , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Factor 3 Regulador del Interferón/genética , Interferones/genética , Nodaviridae/genética , Nodaviridae/fisiología , Infecciones por Virus ARN/transmisión , Infecciones por Virus ARN/virología , Dorada , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...