Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987133

RESUMEN

In this research, the porous polymer structures (IPN) were made from natural isoprene rubber (NR) and poly(methyl methacrylate) (PMMA). The effects of molecular weight and crosslink density of polyisoprene on the morphology and miscibility with PMMA were determined. Sequential semi-IPNs were prepared. Viscoelastic, thermal and mechanical properties of semi-IPN were studied. The results showed that the key factor influencing the miscibility in semi-IPN was the crosslinking density of the natural rubber. The degree of compatibility was increased by doubling the crosslinking level. The degree of miscibility at two different compositions was compared by simulations of the electron spin resonance spectra. Compatibility of semi-IPNs was found to be more efficient when the PMMA content was less than 40 wt.%. A nanometer-sized morphology was obtained for a NR/PMMA ratio of 50/50. Highly crosslinked elastic semi-IPN followed the storage modulus of PMMA after the glass transition as a result of certain degree of phase mixing and interlocked structure. It was shown that the morphology of the porous polymer network could be easily controlled by the proper choice of concentration and composition of crosslinking agent. A dual phase morphology resulted from the higher concentration and the lower crosslinking level. This was used for developing porous structures from the elastic semi-IPN. The mechanical performance was correlated with morphology, and the thermal stability was comparable with respect to pure NR. Investigated materials might be interesting for use as potential carriers of bioactive molecules aimed for innovative applications such as in food packaging.

2.
J Mater Chem B ; 10(47): 9794-9815, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36373493

RESUMEN

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2-o-FESAN]-), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.


Asunto(s)
Boro , Protones
3.
Biomedicines ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073297

RESUMEN

Extracellular vesicles (EVs) are nanometric membranous structures secreted from almost every cell and present in biofluids. Because EV composition reflects the state of its parental tissue, EVs possess an enormous diagnostic/prognostic potential to reveal pathophysiological conditions. However, a prerequisite for such usage of EVs is their detailed characterisation, including visualisation which is mainly achieved by atomic force microscopy (AFM) and electron microscopy (EM). Here we summarise the EV preparation protocols for AFM and EM bringing out the main challenges in the imaging of EVs, both in their natural environment as biofluid constituents and in a saline solution after EV isolation. In addition, we discuss approaches for EV imaging and identify the potential benefits and disadvantages when different AFM and EM methods are applied, including numerous factors that influence the morphological characterisation, standardisation, or formation of artefacts. We also demonstrate the effects of some of these factors by using cerebrospinal fluid as an example of human biofluid with a simpler composition. Here presented comparison of approaches to EV imaging should help to estimate the current state in morphology research of EVs from human biofluids and to identify the most efficient pathways towards the standardisation of sample preparation and microscopy modes.

4.
Molecules ; 26(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924920

RESUMEN

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young's modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Asunto(s)
Antioxidantes/química , Materiales Biocompatibles/química , Embalaje de Alimentos , Membranas Artificiales , Materiales Inteligentes/química , Residuos , Fenómenos Químicos , Quitosano/química , Frutas/química , Fenómenos Mecánicos , Análisis Espectral
5.
ChemistryOpen ; 8(10): 1224, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31592050

RESUMEN

Invited for this month's cover picture are the groups of Professors Rudolf Pietschnig at the University of Kassel, Professor Dietrich Gudat at the University of Stuttgart and Professor László Nyulászi at the Budapest University of Technology and Economics. The cover picture shows the thermally induced homolytic cleavage of the central P-P bond in a phosphorus-rich bis-ferrocenophane furnishing P-centered radicals (as evidenced by the computed spin-density highlighted in blue). The central P6 unit in the title compound is a structural analog of the connecting unit in Hittorf's violet phosphorus, which links the orthogonally arranged tubular entities. A portrait of the German physicist Johann Wilhelm Hittorf is included. Read the full text of their Full Paper at 10.1002/open.201900182.

6.
ChemistryOpen ; 8(10): 1235-1243, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31592068

RESUMEN

A series of bis-[3]ferrocenophanes of the general type Fe(C5H4E')2E-E(E'C5H4)2Fe (E=P, SiH and E'=PtBu, NneoPentyl, NSi(CH3)3) with an isolobal molecular framework have been prepared and characterized by heteronuclear NMR spectroscopy and X-ray crystallography. The thermal dissociation behavior with respect to homolytic fission of the central bond generating phosphorus centered radicals was investigated using EPR spectroscopy and quantum chemical calculations.

7.
Pharmacogn Mag ; 8(30): 171-4, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22701293

RESUMEN

BACKGROUND: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. OBJECTIVE: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). MATERIALS AND METHODS: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. RESULTS: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. CONCLUSION: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...