Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood ; 98(7): 2124-33, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11567999

RESUMEN

Decorin is a small proteoglycan that is ubiquitous in the extracellular matrix of mammalian tissues. It has been extensively demonstrated that decorin inhibits tumor cell growth; however, no data have been reported on the effects of decorin in normal cells. Using nontransformed macrophages from bone marrow, results of this study showed that decorin inhibits macrophage colony-stimulating factor (M-CSF)-dependent proliferation by inducing blockage at the G(1) phase of the cell cycle without affecting cell viability. In addition, decorin rescues macrophages from the induction of apoptosis after growth factor withdrawal. Decorin induces the expression of the cdk inhibitors p21(Waf1) and p27(Kip1). Using macrophages from mice where these genes have been disrupted, inhibition of proliferation mediated by decorin is related to p27(Kip1) expression, whereas p21(Waf1) expression is necessary to protect macrophages from apoptosis. Decorin also inhibits M-CSF-dependent expression of MKP-1 and extends the kinetics of ERK activity, which is characteristic when macrophages become activated instead of proliferating. The effect of decorin on macrophages is not due to its interaction with epidermal growth factor or interferon-gamma receptors. Furthermore, decorin increases macrophage adhesion to the extracellular matrix, and this may be partially responsible for the expression of p27(Kip1) and the modification of ERK activity, but not for the increased cell survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Proteoglicanos/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Células de la Médula Ósea/citología , Adhesión Celular/efectos de los fármacos , Proteínas de Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Ciclinas/efectos de los fármacos , Decorina , Interacciones Farmacológicas , Receptores ErbB , Proteínas de la Matriz Extracelular , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Receptores de Interferón , Proteínas Supresoras de Tumor/efectos de los fármacos , Receptor de Interferón gamma
2.
Immunobiology ; 204(5): 543-50, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11846217

RESUMEN

Macrophages play a critical role during the immune response. Like other cells of the immune system, macrophages are produced in large amounts and most of them die through apoptosis. Macrophages survive in the presence of soluble factors, such as IFN-gamma, or extracellular matrix proteins like decorin. The mechanism toward survival requires the blocking of proliferation at the G1/S boundary of the cell cycle that is mediated by the cyclin-dependent kinase (cdk) inhibitor, p27kip and the induction of a cdk inhibitor, p21waf1. At the inflammatory loci, macrophages need to proliferate or become activated in order to perform their specialized activities. Although the stimuli inducing proliferation and activation follow different intracellular pathways, both require the activation of extracellular signal-regulated kinases (ERKs) 1 and 2. However, the kinetics of ERK-1/2 activation is different and is determined by the induction of the MAP-kinase phosphatase-1 (MKP-1) that dephosphorilates ERK-1/2. This phosphatase plays a critical role in the process of proliferation versus activation of the macrophages.


Asunto(s)
Apoptosis/inmunología , Proteínas de Ciclo Celular , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Fosfoproteínas Fosfatasas , Transducción de Señal/inmunología , Animales , División Celular , Supervivencia Celular , Fosfatasa 1 de Especificidad Dual , Humanos , Proteínas Inmediatas-Precoces/inmunología , Interferón gamma/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/citología , Proteína Fosfatasa 1 , Proteínas Tirosina Fosfatasas/inmunología
3.
Blood ; 95(12): 3823-31, 2000 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10845916

RESUMEN

The deleterious effects of lipopolysaccharide (LPS) during endotoxic shock are associated with the secretion of tumor necrosis factor (TNF) and the production of nitric oxide (NO), both predominantly released by tissue macrophages. We analyzed the mechanism by which LPS induces apoptosis in bone marrow-derived macrophages (BMDM). LPS-induced apoptosis reached a plateau at about 6 hours of stimulation, whereas the production of NO by the inducible NO-synthase (iNOS) required between 12 and 24 hours. Furthermore, LPS-induced early apoptosis was only moderately reduced in the presence of an inhibitor of iNOS or when using macrophages from iNOS -/-mice. In contrast, early apoptosis was paralleled by the rapid secretion of TNF and was almost absent in macrophages from mice deficient for one (p55) or both (p55 and p75) TNF-receptors. During the late phase of apoptosis (12-24 hours) NO significantly contributed to the death of macrophages even in the absence of TNF-receptor signaling. NO-mediated cell death, but not apoptosis induced by TNF, correlated with the induction of p53 and Bax genes. Thus, LPS-induced apoptosis results from 2 independent mechanisms: first and predominantly, through the autocrine secretion of TNF-alpha (early apoptotic events), and second, through the production of NO (late phase of apoptosis). (Blood. 2000;95:3823-3831)


Asunto(s)
Antígenos CD/fisiología , Apoptosis/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores del Factor de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Antígenos CD/genética , Apoptosis/fisiología , Células de la Médula Ósea/citología , Fragmentación del ADN , Genes p53 , Cinética , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/citología , Macrófagos/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/deficiencia , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Penicilamina/análogos & derivados , Penicilamina/farmacología , Proteínas Proto-Oncogénicas/genética , Receptores del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral , Receptores Tipo II del Factor de Necrosis Tumoral , S-Nitroso-N-Acetilpenicilamina , Proteína X Asociada a bcl-2
4.
J Biol Chem ; 275(10): 7403-9, 2000 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-10702314

RESUMEN

Bone marrow-derived macrophages proliferate in response to specific growth factors, including macrophage colony-stimulating factor (M-CSF). When stimulated with activating factors, such as lipopolysaccharide (LPS), macrophages stop proliferating and produce proinflammatory cytokines. Although triggering opposed responses, both M-CSF and LPS induce the activation of extracellular-regulated kinases (ERKs) 1 and 2. However, the time-course of ERK activation is different; maximal activation by M-CSF and LPS occurred after 5 and 15 min of stimulation, respectively. Granulocyte/macrophage colony-stimulating factor, interleukin 3, and TPA, all of which induced macrophage proliferation, also induced ERK activity, which was maximal at 5 min poststimulation. The use of PD98059, which specifically blocks ERK 1 and 2 activation, demonstrated that ERK activity was necessary for macrophage proliferation in response to these factors. The treatment with phosphatidylcholine-specific phospholipase C (PC-PLC) inhibited macrophage proliferation, induced the expression of cytokines, and triggered a pattern of ERK activation equivalent to that induced by LPS. Moreover, PD98059 inhibited the expression of cytokines induced by LPS or PC-PLC, thus suggesting that ERK activity is also required for macrophage activation by these two agents. Activation of the JNK pathway did not discriminate between proliferative and activating stimuli. In conclusion, our results allow to correlate the differences in the time-course of ERK activity with the macrophagic response toward proliferation or activation.


Asunto(s)
Activación de Macrófagos , Macrófagos/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Animales , División Celular , Flavonoides/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-1/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 3 Activada por Mitógenos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/biosíntesis , Fosfolipasas de Tipo C/farmacología
5.
J Immunol ; 164(1): 29-37, 2000 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-10604989

RESUMEN

LPS induces in bone marrow macrophages the transient expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). Because MKP-1 plays a crucial role in the attenuation of different MAPK cascades, we were interested in the characterization of the signaling mechanisms involved in the control of MKP-1 expression in LPS-stimulated macrophages. The induction of MKP-1 was blocked by genistein, a tyrosine kinase inhibitor, and by two different protein kinase C (PKC) inhibitors (GF109203X and calphostin C). We had previously shown that bone marrow macrophages express the isoforms PKC beta I, epsilon, and zeta. Of all these, only PKC beta I and epsilon are inhibited by GF109203X. The following arguments suggest that PKC epsilon is required selectively for the induction of MKP-1 by LPS. First, in macrophages exposed to prolonged treatment with PMA, MKP-1 induction by LPS correlates with the levels of expression of PKC epsilon but not with that of PKC beta I. Second, Gö6976, an inhibitor selective for conventional PKCs, including PKC beta I, does not alter MKP-1 induction by LPS. Last, antisense oligonucleotides that block the expression of PKC epsilon, but not those selective for PKC beta I or PKC zeta, inhibit MKP-1 induction and lead to an increase of extracellular-signal regulated kinase activity during the macrophage response to LPS. Finally, in macrophages stimulated with LPS we observed significant activation of PKC epsilon. In conclusion, our results demonstrate an important role for PKC epsilon in the induction of MKP-1 and the subsequent negative control of MAPK activity in macrophages.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Inmediatas-Precoces/biosíntesis , Isoenzimas/fisiología , Lipopolisacáridos/inmunología , Activación de Macrófagos/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Fosfoproteínas Fosfatasas , Proteína Quinasa C/fisiología , Proteínas Tirosina Fosfatasas/biosíntesis , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/inmunología , Proteína de Unión a CREB , Relación Dosis-Respuesta Inmunológica , Fosfatasa 1 de Especificidad Dual , Activación Enzimática/inmunología , Inducción Enzimática/inmunología , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Proteínas Inmediatas-Precoces/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/fisiología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/farmacología , Fosforilación , Regiones Promotoras Genéticas/inmunología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C-epsilon , Proteína Fosfatasa 1 , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/genética , Elementos de Respuesta/inmunología , Transducción de Señal/inmunología , Especificidad por Sustrato/inmunología , Transactivadores/metabolismo
6.
J Immunol ; 163(8): 4140-9, 1999 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-10510349

RESUMEN

Adenosine is produced during inflammation and modulates different functional activities in macrophages. In murine bone marrow-derived macrophages, adenosine inhibits M-CSF-dependent proliferation with an IC50 of 45 microM. Only specific agonists that can activate A2B adenosine receptors such as 5'-N-ethylcarboxamidoadenosine, but not those active on A1 (N6-(R)-phenylisopropyladenosine), A2A ([p-(2-carbonylethyl)phenylethylamino]-5'-N-ethylcarboxamido adenosine), or A3 (N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide) receptors, induce the generation of cAMP and modulate macrophage proliferation. This suggests that adenosine regulates macrophage proliferation by interacting with the A2B receptor and subsequently inducing the production of cAMP. In fact, both 8-Br-cAMP (IC50 85 microM) and forskolin (IC50 7 microM) inhibit macrophage proliferation. Moreover, the inhibition of adenylyl cyclase and protein kinase A blocks the inhibitory effect of adenosine and its analogues on macrophage proliferation. Adenosine causes an arrest of macrophages at the G1 phase of the cell cycle without altering the activation of the extracellular-regulated protein kinase pathway. The treatment of macrophages with adenosine induces the expression of p27kip-1, a G1 cyclin-dependent kinase inhibitor, in a protein kinase A-dependent way. Moreover, the involvement of p27kip-1 in the adenosine inhibition of macrophage proliferation was confirmed using macrophages from mice with a disrupted p27kip-1 gene. These results demonstrate that adenosine inhibits macrophage proliferation through a mechanism that involves binding to A2B adenosine receptor, the generation of cAMP, and the induction of p27kip-1 expression.


Asunto(s)
Adenosina/farmacología , Proteínas de Ciclo Celular , Inhibidores de Crecimiento/farmacología , Factor Estimulante de Colonias de Macrófagos/fisiología , Macrófagos/citología , Macrófagos/inmunología , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Supresoras de Tumor , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Fase G1/efectos de los fármacos , Fase G1/inmunología , Inmunosupresores/farmacología , Líquido Intracelular/metabolismo , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptor de Adenosina A2B , Receptores Purinérgicos P1/metabolismo
7.
J Immunol ; 163(5): 2452-62, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10452980

RESUMEN

M-CSF triggers the activation of extracellular signal-regulated protein kinases (ERK)-1/2. We show that inhibition of this pathway leads to the arrest of bone marrow macrophages at the G0/G1 phase of the cell cycle without inducing apoptosis. M-CSF induces the transient expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), which correlates with the inactivation of ERK-1/2. Because the time course of ERK activation must be finely controlled to induce cell proliferation, we studied the mechanisms involved in the induction of MKP-1 by M-CSF. Activation of ERK-1/2 is not required for this event. Therefore, M-CSF activates ERK-1/2 and induces MKP-1 expression through different pathways. The use of two protein kinase C (PKC) inhibitors (GF109203X and calphostin C) revealed that M-CSF induces MKP-1 expression through a PKC-dependent pathway. We analyzed the expression of different PKC isoforms in bone marrow macrophages, and we only detected PKCbetaI, PKCepsilon, and PKCzeta. PKCzeta is not inhibited by GF109203X/calphostin C. Of the other two isoforms, PKCepsilon is the best candidate to mediate MKP-1 induction. Prolonged exposure to PMA slightly inhibits MKP-1 expression in response to M-CSF. In bone marrow macrophages, this treatment leads to a complete depletion of PKCbetaI, but only a partial down-regulation of PKCepsilon. Moreover, no translocation of PKCbetaI or PKCzeta from the cytosol to particulate fractions was detected in response to M-CSF, whereas PKCepsilon was constitutively present at the membrane and underwent significant activation in M-CSF-stimulated macrophages. In conclusion, we remark the role of PKC, probably isoform epsilon, in the negative control of ERK-1/2 through the induction of their specific phosphatase.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Inmediatas-Precoces/biosíntesis , Factor Estimulante de Colonias de Macrófagos/fisiología , Macrófagos/enzimología , Fosfoproteínas Fosfatasas , Proteína Quinasa C/fisiología , Proteínas Tirosina Fosfatasas/biosíntesis , Transducción de Señal/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/enzimología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/inmunología , División Celular/inmunología , Células Cultivadas , Fosfatasa 1 de Especificidad Dual , Activación Enzimática/efectos de los fármacos , Activación Enzimática/inmunología , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Líquido Intracelular/enzimología , Isoenzimas/metabolismo , Macrófagos/citología , Maleimidas/farmacología , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas/biosíntesis , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 1 , Factor de Transcripción AP-1/metabolismo
8.
Immunity ; 11(1): 103-13, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10435583

RESUMEN

Incubation of bone marrow macrophages with lipopolysaccharide (LPS) or interferon gamma (IFN gamma) blocks macrophage proliferation. LPS treatment or M-CSF withdrawal arrests the cell cycle at early G1 and induces apoptosis. Treatment of macrophages with IFN gamma stops the cell cycle later, at the G1/S boundary, induces p21Waf1, and does not induce apoptosis. Moreover, pretreatment of macrophages with IFN gamma protects from apoptosis induced by several stimuli. Inhibition of p21Waf1 with antisense oligonucleotides or using KO mice shows that the induction of p21Waf1 by IFN gamma mediates this protection. Thus, IFN gamma makes macrophages unresponsive to apoptotic stimuli by inducing p21Waf1 and arresting the cell cycle at the G1/S boundary. Therefore, the cells of the innate immune system could only survive while they were functionally active.


Asunto(s)
Apoptosis/inmunología , Ciclo Celular/inmunología , Ciclinas/biosíntesis , Inhibidores de Crecimiento/farmacología , Interferón gamma/farmacología , Macrófagos/citología , Animales , Células de la Médula Ósea/citología , Ciclo Celular/genética , División Celular/genética , División Celular/inmunología , Células Cultivadas , Ciclina D1/antagonistas & inhibidores , Ciclina D1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/antagonistas & inhibidores , Ciclinas/genética , Citometría de Flujo , Factor I del Crecimiento Similar a la Insulina/farmacología , Interferón gamma/fisiología , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Oligonucleótidos Antisentido/farmacología
9.
J Leukoc Biol ; 63(4): 405-17, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9544570

RESUMEN

Although all the cells in an organism contain the same genetic information, differences in the cell phenotype arise from the expression of lineage-specific genes. During myelopoiesis, external differentiating signals regulate the expression of a set of transcription factors. The combined action of these transcription factors subsequently determines the expression of myeloid-specific genes and the generation of monocytes and macrophages. In particular, the transcription factor PU.1 has a critical role in this process. We review the contribution of several transcription factors to the control of macrophage development.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Leucopoyesis , Macrófagos/fisiología , Monocitos/fisiología , Factores de Transcripción/fisiología , Animales , Humanos , Proteínas Proto-Oncogénicas/fisiología , Células Madre/fisiología , Transactivadores/fisiología , Dedos de Zinc/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA