Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 30(3): 762-771, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321218

RESUMEN

Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología
2.
Science ; 380(6649): 1053-1058, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289895

RESUMEN

Challenges in quantifying how force affects bond formation have hindered the widespread adoption of mechanochemistry. We used parallel tip-based methods to determine reaction rates, activation energies, and activation volumes of force-accelerated [4+2] Diels-Alder cycloadditions between surface-immobilized anthracene and four dienophiles that differ in electronic and steric demand. The rate dependences on pressure were unexpectedly strong, and substantial differences were observed between the dienophiles. Multiscale modeling demonstrated that in proximity to a surface, mechanochemical trajectories ensued that were distinct from those observed solvothermally or under hydrostatic pressure. These results provide a framework for anticipating how experimental geometry, molecular confinement, and directed force contribute to mechanochemical kinetics.

3.
Genes Dev ; 37(7-8): 303-320, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024284

RESUMEN

MYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway-the most predominantly mutated pathway in this disease-turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.


Asunto(s)
Melanoma , Humanos , Pronóstico , Melanoma/genética , Transducción de Señal , Carcinogénesis , Transformación Celular Neoplásica , Proteínas Proto-Oncogénicas c-myc/metabolismo
4.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36765784

RESUMEN

MYC is an oncoprotein causally involved in the majority of human cancers and a most wanted target for cancer treatment. Omomyc is the best-characterized MYC dominant negative to date. In the last years, it has been developed into a therapeutic miniprotein for solid tumor treatment and recently reached clinical stage. However, since the in vivo stability of therapeutic proteins, especially within the tumor vicinity, can be affected by proteolytic degradation, the perception of Omomyc as a valid therapeutic agent has been often questioned. In this study, we used a mass spectrometry approach to evaluate the stability of Omomyc in tumor biopsies from murine xenografts following its intravenous administration. Our data strongly support that the integrity of the functional domains of Omomyc (DNA binding and dimerization region) remains preserved in the tumor tissue for at least 72 hours following administration and that the protein shows superior pharmacokinetics in the tumor compartment compared with blood serum.

5.
Org Lett ; 24(35): 6364-6368, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36036764

RESUMEN

Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.

6.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860495

RESUMEN

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular , Unión Proteica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc
7.
SynOpen ; 5(3): 173-228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34825124

RESUMEN

This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C-H bonds in amines and their derivatives.

8.
Angew Chem Int Ed Engl ; 60(37): 20350-20357, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34273126

RESUMEN

We report a novel glycan array architecture that binds the mannose-specific glycan binding protein, concanavalin A (ConA), with sub-femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted-from thiol-(meth)acrylate polymerization with thiol-ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted-to/grafted-from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

9.
Org Lett ; 23(16): 6367-6371, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34323490

RESUMEN

A simple one-pot procedure enables the sequential, regioselective, and diastereoselective introduction of the same or two different substituents to the α- and α'-positions of unprotected azacycles. Aryl, alkyl, and alkenyl substituents are introduced via their corresponding organolithium compounds. The scope of this transformation includes pyrrolidines, piperidines, azepanes, and piperazines.

10.
Adv Mater ; 33(21): e2100803, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33876463

RESUMEN

A photochemical printer, equipped with a digital micromirror device (DMD), leads to the rapid elucidation of the kinetics of the surface-initiated atom-transfer radical photopolymerization of N,N-dimethylacrylamide (DMA) and N-isopropylacrylamide (NIPAM) monomers. This effort reveals conditions where polymer brushes of identical heights can be grown from each monomer. With these data, hidden images are created that appear upon heating the substrate above the lower critical solution temperature (LCST) of polyNIPAM. By introducing a third monomer, methacryloxyethyl thiocarbamoyl rhodamine B, a second, orthogonal image appears upon UV-irradiation. With these studies, it is shown how a new photochemical printer accelerates discovery, creates arbitrary patterns, and addresses long-standing problems in brush polymer and surface chemistry. With this technology in hand a new method is demonstrated to encrypt data within hypersurfaces.

11.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33653688

RESUMEN

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Asunto(s)
Adenoma de Células de los Islotes Pancreáticos/fisiopatología , Carcinogénesis/metabolismo , Receptores Frizzled/metabolismo , Adenoma de Células de los Islotes Pancreáticos/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Femenino , Receptores Frizzled/genética , Receptores Frizzled/fisiología , Genes myc/genética , Genes myc/fisiología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
12.
Cells ; 9(4)2020 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260326

RESUMEN

First designed and published in 1998 as a laboratory tool to study Myc perturbation, Omomyc has come a long way in the past 22 years. This dominant negative has contributed to our understanding of Myc biology when expressed, first, in normal and cancer cells, and later in genetically-engineered mice, and has shown remarkable anti-cancer properties in a wide range of tumor types. The recently described therapeutic effect of purified Omomyc mini-protein-following the surprising discovery of its cell-penetrating capacity-constitutes a paradigm shift. Now, much more than a proof of concept, the most characterized Myc inhibitor to date is advancing in its drug development pipeline, pushing Myc inhibition into the clinic.


Asunto(s)
Neoplasias/terapia , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Investigación Biomédica , Epigénesis Genética , Humanos , Neoplasias/genética , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Proteínas Proto-Oncogénicas c-myc/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/química , Activación Transcripcional/genética
13.
Nat Commun ; 11(1): 1244, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144265

RESUMEN

Polymer brush patterns have a central role in established and emerging research disciplines, from microarrays and smart surfaces to tissue engineering. The properties of these patterned surfaces are dependent on monomer composition, polymer height, and brush distribution across the surface. No current lithographic method, however, is capable of adjusting each of these variables independently and with micrometer-scale resolution. Here we report a technique termed Polymer Brush Hypersurface Photolithography, which produces polymeric pixels by combining a digital micromirror device (DMD), an air-free reaction chamber, and microfluidics to independently control monomer composition and polymer height of each pixel. The printer capabilities are demonstrated by preparing patterns from combinatorial polymer and block copolymer brushes. Images from polymeric pixels are created using the light reflected from a DMD to photochemically initiate atom-transfer radical polymerization from initiators immobilized on Si/SiO2 wafers. Patterning is combined with high-throughput analysis of grafted-from polymerization kinetics, accelerating reaction discovery, and optimization of polymer coatings.

14.
Expert Opin Ther Targets ; 24(2): 101-114, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32003251

RESUMEN

Introduction: Lung cancer is the leading cause of cancer-related mortality globally. Despite recent advances with personalized therapies and immunotherapy, the prognosis remains dire and recurrence is frequent. Myc is an oncogene deregulated in human cancers, including lung cancer, where it supports tumorigenic processes and progression. Elevated Myc levels have also been associated with resistance to therapy.Areas covered: This article summarizes the genomic and transcriptomic studies that compile evidence for (i) MYC, MYCN, and MYCL amplification and overexpression in lung cancer patients, and (ii) their prognostic significance. We collected the most recent literature regarding the development of Myc inhibitors where the emphasis is on those inhibitors tested in lung cancer experimental models and their potential for future clinical application.Expert opinion: The targeting of Myc in lung cancer is potentially an unprecedented opportunity for inhibiting a key player in tumor progression and maintenance and therapeutic resistance. Myc inhibitory strategies are on the path to their clinical application but further work is necessary for the assessment of their use in combination with standard treatment approaches. Given the role of Myc in immune suppression, a significant opportunity may exist in the combination of Myc inhibitors with immunotherapies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Desarrollo de Medicamentos , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteína Proto-Oncogénica N-Myc/genética , Proteínas Proto-Oncogénicas c-myc/genética
16.
Faraday Discuss ; 219(0): 77-89, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31364656

RESUMEN

Interactions between cell surface glycans and glycan binding proteins (GBPs) have a central role in the immune response, pathogen-host recognition, cell-cell communication, and a myriad other biological processes. Because of the weak association between GBPs and glycans in solution, multivalent and cooperative interactions in the dense glycocalyx have an outsized role in directing binding affinity and selectivity. However, a major challenge in glycobiology is that few experimental approaches exist for examining and understanding quantitatively how glycan density affects avidity with GBPs, and there is a need for new tools that can fabricate glycan arrays with the ability to vary their density controllably and systematically in each feature. Here, we use thiol-ene reactions to fabricate glycan arrays using a recently developed photochemical printer that leverages a digital micromirror device and microfluidics to create multiplexed patterns of immobilized mannosides, where the density of mannosides in each feature was varied by dilution with an inert spacer allyl alcohol. The association between these immobilized glycans and FITC-labeled concanavalin A (ConA) - a tetrameric GBP that binds to mannosides multivalently - was measured by fluorescence microscopy. We observed that the fluorescence decreased nonlinearly with increasing spacer concentration in the features, and we present a model that relates the average mannoside-mannoside spacing to the abrupt drop-off in ConA binding. Applying these recent advances in microscale photolithography to the challenge of mimicking the architecture of the glycocalyx could lead to a rapid understanding of how information is trafficked on the cell surface.


Asunto(s)
Bioimpresión/métodos , Concanavalina A/metabolismo , Manósidos/metabolismo , Análisis por Micromatrices/métodos , Concanavalina A/análisis , Fluoresceína-5-Isotiocianato/análisis , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescencia , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Manósidos/química , Modelos Moleculares , Unión Proteica
17.
Sci Transl Med ; 11(484)2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894502

RESUMEN

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non-small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/uso terapéutico , ADN/metabolismo , Modelos Animales de Enfermedad , Elementos E-Box/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/farmacocinética , Proteínas Proto-Oncogénicas c-myc/farmacología , Proteínas Proto-Oncogénicas c-myc/uso terapéutico
18.
ACS Macro Lett ; 8(11): 1474-1478, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35651178

RESUMEN

Here, we show that the surface-initiated thiol-(meth)acrylate polymerization can be used to create brush polymer patterns with precise control over the feature height at each microscale pixel. The reaction was studied using a printer where a digital micromirror device controls light delivery to the surface, so multiple reaction conditions can be examined in each print. The resulting increases in experimental throughput and precision were demonstrated by studying systematically the effect of photocatalyst, photoinitiator, and light intensity on feature growth rate. In addition to demonstrating the utility of surface-initiated thiol-(meth)acrylate chemistry for creating complex brush polymer patterns, this work describes an improved and high-throughput approach for studying grafted-from photopolymerizations.

19.
ACS Biomater Sci Eng ; 5(6): 3131-3138, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33405545

RESUMEN

Spatially encoded glycan microarrays promise to rapidly accelerate our understanding of glycan binding in myriad biological processes, which could lead to new therapeutics and previously unknown drug targets. Here, we bring together a digital micromirror device, microfluidic introduction of inks, and advanced surface photochemistry to produce multiplexed glycan microarrays with reduced feature diameters, an increased number of features per array, and precise control of glycan density at each feature. The versatility of this platform was validated by printing two distinct glycan microarrays where, in the first, different glycans were immobilized to create a multiplexed array and, in another, the density of a single glycan was varied systematically to explore the effect of surface presentation on lectin-glycan binding. For lectin binding studies on these miniaturized microarrays, a microfluidic incubation chip was developed that channels multiple different protein solutions over the array. Using the multiplexed array, binding between eight lectin solutions and five different glycosides was determined, such that a single array can interrogate the binding between 40 lectin-glycan combinations. The incubation chip was then used on the array with varied glycan density to study the effects of glycan density on lectin binding. These results show that this novel printer could rapidly advance our understanding of critical unresolved questions in glycobiology, while simultaneously increasing the throughput and reducing the cost of these experiments.

20.
Oncotarget ; 9(27): 18734-18746, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721157

RESUMEN

Effectively treating KRAS-driven tumors remains an unsolved challenge. The inhibition of downstream signaling effectors is a way of overcoming the issue of direct targeting of mutant KRAS, which has shown limited efficacy so far. Bromodomain and Extra-Terminal (BET) protein inhibition has displayed anti-tumor activity in a wide range of cancers, including KRAS-driven malignancies. Here, we preclinically evaluate the effect of BET inhibition making use of a new BET inhibitor, BAY 1238097, against Pancreatic Ductal Adenocarcinoma (PDAC) and Non-Small Cell Lung Cancer (NSCLC) models harboring RAS mutations both in vivo and in vitro. Our results demonstrate that BET inhibition displays significant therapeutic impact in genetic mouse models of KRAS-driven PDAC and NSCLC, reducing both tumor area and tumor grade. The same approach also causes a significant reduction in cell number of a panel of RAS-mutated human cancer cell lines (8 PDAC and 6 NSCLC). In this context, we demonstrate that while BET inhibition by BAY 1238097 decreases MYC expression in some cell lines, at least in PDAC cells its anti-tumorigenic effect is independent of MYC regulation. Together, these studies reinforce the use of BET inhibition and prompt the optimization of more efficient and less toxic BET inhibitors for the treatment of KRAS-driven malignancies, which are in urgent therapeutic need.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...