Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(12): eadk1250, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507482

RESUMEN

RNA nanotechnology aims to use RNA as a programmable material to create self-assembling nanodevices for application in medicine and synthetic biology. The main challenge is to develop advanced RNA robotic devices that both sense, compute, and actuate to obtain enhanced control over molecular processes. Here, we use the RNA origami method to prototype an RNA robotic device, named the "Traptamer," that mechanically traps the fluorescent aptamer, iSpinach. The Traptamer is shown to sense two RNA key strands, acts as a Boolean AND gate, and reversibly controls the fluorescence of the iSpinach aptamer. Cryo-electron microscopy of the closed Traptamer structure at 5.45-angstrom resolution reveals the mechanical mode of distortion of the iSpinach motif. Our study suggests a general approach to distorting RNA motifs and a path forward to build sophisticated RNA machines that through sensing, computing, and actuation modules can be used to precisely control RNA functionalities in cellular systems.


Asunto(s)
Nanoestructuras , Robótica , ARN/genética , Microscopía por Crioelectrón , Oligonucleótidos/química , Nanotecnología/métodos , Colorantes , Nanoestructuras/química , Conformación de Ácido Nucleico
2.
Methods Mol Biol ; 2639: 51-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166710

RESUMEN

RNA nanotechnology is able to take advantage of the modularity of RNA to build a wide variety of structures and functional devices from a common set of structural modules. The RNA origami architecture harnesses the property of RNA to fold as it is being enzymatically synthesized by the RNA polymerase and enables the design of single-stranded devices that integrate multiple structural and functional RNA motifs. Here, we provide detailed procedures on how to design and characterize RNA origami structures. The process is illustrated by two examples: one that forms lattices and another example that acts as biosensors.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , ADN/química , ARN/química , Nanotecnología/métodos , Diseño Asistido por Computadora , Proteínas , Nanoestructuras/química , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA